Titanium Carbide and Vibration Effect on the Structure and Mechanical Properties of Medium-Carbon Alloy Steel

This study aimed to improve the hardness and wear behavior of medium-carbon alloy steel through the addition of titanium carbide ultradispersed powder and low-frequency vibration treatment during solidification. It was shown that the complex effect of low-frequency vibration with the additional intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2023-07, Vol.13 (7), p.1135
Hauptverfasser: Kovalyova, Tatyana, Skvortsov, Yevgeniy, Kvon, Svetlana, Gerard, Michot, Issagulov, Aristotle, Kulikov, Vitaliy, Skvortsova, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to improve the hardness and wear behavior of medium-carbon alloy steel through the addition of titanium carbide ultradispersed powder and low-frequency vibration treatment during solidification. It was shown that the complex effect of low-frequency vibration with the additional introduction of a small amount of titanium carbide ultradispersed powder with the size of 0.5–0.7 μm during the casting process had a positive effect on structural changes and led to improved mechanical properties, and so increasing the value of microhardness by 37.2% was notable. In the process of shock dynamic impact, imprints with crater depths of 13.69 µm (500 N) and 14.73 (700 N) were obtained, which, respectively, are 23.34 and 42.34% less than that on the original cast sample. In the process of tribological testing, decreasing the depth of the wear track (50.25%) was revealed with decreasing the value of the friction coefficient by 14.63%.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings13071135