A Comparative Study on Characterization and High-Temperature Wear Behaviors of Thermochemical Coatings Applied to Cobalt-Based Haynes 25 Superalloys
This study investigated the characteristic properties of aluminizing, boronizing, and boro-aluminizing coatings grown on Haynes 25 superalloys and their effects on the high-temperature wear behavior. The coating processes were conducted in a controlled atmosphere at 950 °C for 3 h. Characterization...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2023-07, Vol.13 (7), p.1272 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigated the characteristic properties of aluminizing, boronizing, and boro-aluminizing coatings grown on Haynes 25 superalloys and their effects on the high-temperature wear behavior. The coating processes were conducted in a controlled atmosphere at 950 °C for 3 h. Characterization studies were performed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis, nanoindentation testing, and high-temperature wear tests. It was determined that the thickness values of aluminide, boride, and boride–aluminide coatings were 140 ± 1.50 µm, 37.58 ± 2.85 µm, and 14.73 ± 1.71 µm, and their hardness values were 12.23 ± 0.9 GPa, 26.34 ± 2.33 GPa, and 23.46 ± 1.29 GPa, respectively. The hardness of the coatings resulted in reduced wear volume losses both at room temperature and at 500 °C. While the best wear resistance was obtained in the boronized sample at room temperature due to its high hardness, the best wear resistance at 500 °C was obtained in the boro-aluminized sample with the oxidation–reduction effect of Al content and the lubricating effect of B content in the boro-aluminide coating. This indicates that the presence of aluminum in boride layers improves the high-temperature wear resistance of boride coatings. The coated samples underwent abrasive wear at room temperature, whereas at 500 °C, the wear mechanism shifted to an oxidative-assisted adhesive wear mechanism. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings13071272 |