GraphRNN Revisited: An Ablation Study and Extensions for Directed Acyclic Graphs

GraphRNN is a deep learning-based architecture proposed by You et al. for learning generative models for graphs. We replicate the results of You et al. using a reproduced implementation of the GraphRNN architecture and evaluate this against baseline models using new metrics. Through an ablation stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Das, Taniya, Koch, Mark, Ravichandran, Maya, Khatri, Nikhil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GraphRNN is a deep learning-based architecture proposed by You et al. for learning generative models for graphs. We replicate the results of You et al. using a reproduced implementation of the GraphRNN architecture and evaluate this against baseline models using new metrics. Through an ablation study, we find that the BFS traversal suggested by You et al. to collapse representations of isomorphic graphs contributes significantly to model performance. Additionally, we extend GraphRNN to generate directed acyclic graphs by replacing the BFS traversal with a topological sort. We demonstrate that this method improves significantly over a directed-multiclass variant of GraphRNN on a real-world dataset.
ISSN:2331-8422