Resistance spot welding of dissimilar material joints with a cold-gas-sprayed inlayer

In this publication, cold gas spraying (CGS) is investigated as an enabler for aluminum-steel joints. Using a powder-based coating process to adhere a steel layer to an aluminum substrate allows a steel component to be welded to the deposited layer by resistance spot welding. This method permits the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-08, Vol.127 (11-12), p.5679-5690
Hauptverfasser: Hagen, Christian, Klinkenberg, Franz-Josef, Ossenbrink, Ralf, Michailov, Vesselin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this publication, cold gas spraying (CGS) is investigated as an enabler for aluminum-steel joints. Using a powder-based coating process to adhere a steel layer to an aluminum substrate allows a steel component to be welded to the deposited layer by resistance spot welding. This method permits the metallurgical connection between similar materials to be separated, while mechanical bonding ensures the connection at the dissimilar aluminum-to-inlayer interface. A modification of the porous CGS layer, as well as the creation of the remelted zone in the aluminum, can be observed during the resistance spot welding process. Electron backscatter diffraction (EBSD) analyses show that the severely prestressed particles in the CGS coating recrystallize, which coincides with a decrease in defect density and hardness in the heat-affected zone. Microscopy of the aluminum substrate shows the creation of metallurgical pores as well as the expansion of pores attributed to the casting process. The rise in remelted aluminum hardness and decrease in the heat-affected zone of the CGS layer indicate the formation of a metallurgical notch.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-023-11897-x