On the Mass Dependence of the Modular Operator for a Double Cone

We present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in ( 1 + 1 ) - and ( 3 + 1 )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2023-09, Vol.24 (9), p.3031-3054
Hauptverfasser: Bostelmann, Henning, Cadamuro, Daniela, Minz, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3054
container_issue 9
container_start_page 3031
container_title Annales Henri Poincaré
container_volume 24
creator Bostelmann, Henning
Cadamuro, Daniela
Minz, Christoph
description We present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in ( 1 + 1 ) - and ( 3 + 1 ) -dimensional Minkowski spacetime, using a discretization of time-0 data in position space. In the case of a wedge region, one component of the modular generator is well known to be a mass-independent multiplication operator; our results strongly suggest that for the double cone, the corresponding component is still at least close to a multiplication operator, but that it is dependent on mass and angular momentum.
doi_str_mv 10.1007/s00023-023-01311-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2842544992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842544992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c1ecdc5fdc4b2a7029c89f753039bde83f13fcda0677adbb7cb565ba74f502ea3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYPxInN1DLSyrqBc6WH2ugKnGwkwP_nrRBcOMw2tVqZlb6CDlncMkA1FUGAC6KvZhgrBAHZMYklwVUFTv83YU6Jic5bwAYr0UzI9frlvZvSJ9MznSJHbYeW4c0hukc_bA1ia47TKaPiYZRhi7jYLdIF7HFU3IUzDbj2c-ck5e72-fFQ7Fa3z8ublaFE5XoC8fQeVcG76TlRgFvXN0EVQoQjfVYi8BEcN5ApZTx1ipny6q0RslQAkcj5uRi6u1S_Bww93oTh9SOLzWvJS-lbBo-uvjkcinmnDDoLr1_mPSlGegdKT2R0nvtSGkxhsQUyqO5fcX0V_1P6hvd-Wpy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842544992</pqid></control><display><type>article</type><title>On the Mass Dependence of the Modular Operator for a Double Cone</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bostelmann, Henning ; Cadamuro, Daniela ; Minz, Christoph</creator><creatorcontrib>Bostelmann, Henning ; Cadamuro, Daniela ; Minz, Christoph</creatorcontrib><description>We present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in ( 1 + 1 ) - and ( 3 + 1 ) -dimensional Minkowski spacetime, using a discretization of time-0 data in position space. In the case of a wedge region, one component of the modular generator is well known to be a mass-independent multiplication operator; our results strongly suggest that for the double cone, the corresponding component is still at least close to a multiplication operator, but that it is dependent on mass and angular momentum.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-023-01311-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Angular momentum ; Classical and Quantum Gravitation ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Minkowski space ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Subspaces ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2023-09, Vol.24 (9), p.3031-3054</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c1ecdc5fdc4b2a7029c89f753039bde83f13fcda0677adbb7cb565ba74f502ea3</citedby><cites>FETCH-LOGICAL-c363t-c1ecdc5fdc4b2a7029c89f753039bde83f13fcda0677adbb7cb565ba74f502ea3</cites><orcidid>0000-0002-0233-2928 ; 0000-0002-8639-9731 ; 0000-0002-5429-5997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-023-01311-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-023-01311-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bostelmann, Henning</creatorcontrib><creatorcontrib>Cadamuro, Daniela</creatorcontrib><creatorcontrib>Minz, Christoph</creatorcontrib><title>On the Mass Dependence of the Modular Operator for a Double Cone</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><description>We present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in ( 1 + 1 ) - and ( 3 + 1 ) -dimensional Minkowski spacetime, using a discretization of time-0 data in position space. In the case of a wedge region, one component of the modular generator is well known to be a mass-independent multiplication operator; our results strongly suggest that for the double cone, the corresponding component is still at least close to a multiplication operator, but that it is dependent on mass and angular momentum.</description><subject>Angular momentum</subject><subject>Classical and Quantum Gravitation</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Minkowski space</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Subspaces</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYPxInN1DLSyrqBc6WH2ugKnGwkwP_nrRBcOMw2tVqZlb6CDlncMkA1FUGAC6KvZhgrBAHZMYklwVUFTv83YU6Jic5bwAYr0UzI9frlvZvSJ9MznSJHbYeW4c0hukc_bA1ia47TKaPiYZRhi7jYLdIF7HFU3IUzDbj2c-ck5e72-fFQ7Fa3z8ublaFE5XoC8fQeVcG76TlRgFvXN0EVQoQjfVYi8BEcN5ApZTx1ipny6q0RslQAkcj5uRi6u1S_Bww93oTh9SOLzWvJS-lbBo-uvjkcinmnDDoLr1_mPSlGegdKT2R0nvtSGkxhsQUyqO5fcX0V_1P6hvd-Wpy</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Bostelmann, Henning</creator><creator>Cadamuro, Daniela</creator><creator>Minz, Christoph</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0233-2928</orcidid><orcidid>https://orcid.org/0000-0002-8639-9731</orcidid><orcidid>https://orcid.org/0000-0002-5429-5997</orcidid></search><sort><creationdate>20230901</creationdate><title>On the Mass Dependence of the Modular Operator for a Double Cone</title><author>Bostelmann, Henning ; Cadamuro, Daniela ; Minz, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c1ecdc5fdc4b2a7029c89f753039bde83f13fcda0677adbb7cb565ba74f502ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular momentum</topic><topic>Classical and Quantum Gravitation</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Minkowski space</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Subspaces</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bostelmann, Henning</creatorcontrib><creatorcontrib>Cadamuro, Daniela</creatorcontrib><creatorcontrib>Minz, Christoph</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bostelmann, Henning</au><au>Cadamuro, Daniela</au><au>Minz, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Mass Dependence of the Modular Operator for a Double Cone</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>24</volume><issue>9</issue><spage>3031</spage><epage>3054</epage><pages>3031-3054</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>We present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in ( 1 + 1 ) - and ( 3 + 1 ) -dimensional Minkowski spacetime, using a discretization of time-0 data in position space. In the case of a wedge region, one component of the modular generator is well known to be a mass-independent multiplication operator; our results strongly suggest that for the double cone, the corresponding component is still at least close to a multiplication operator, but that it is dependent on mass and angular momentum.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00023-023-01311-3</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0233-2928</orcidid><orcidid>https://orcid.org/0000-0002-8639-9731</orcidid><orcidid>https://orcid.org/0000-0002-5429-5997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2023-09, Vol.24 (9), p.3031-3054
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2842544992
source SpringerLink Journals - AutoHoldings
subjects Angular momentum
Classical and Quantum Gravitation
Dynamical Systems and Ergodic Theory
Elementary Particles
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Minkowski space
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Subspaces
Theoretical
title On the Mass Dependence of the Modular Operator for a Double Cone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Mass%20Dependence%20of%20the%20Modular%20Operator%20for%20a%20Double%20Cone&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Bostelmann,%20Henning&rft.date=2023-09-01&rft.volume=24&rft.issue=9&rft.spage=3031&rft.epage=3054&rft.pages=3031-3054&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-023-01311-3&rft_dat=%3Cproquest_cross%3E2842544992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842544992&rft_id=info:pmid/&rfr_iscdi=true