On the Mass Dependence of the Modular Operator for a Double Cone
We present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in ( 1 + 1 ) - and ( 3 + 1 )...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2023-09, Vol.24 (9), p.3031-3054 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a numerical approximation scheme for the Tomita–Takesaki modular operator of local subalgebras in linear quantum fields, working at one-particle level. This is applied to the local subspaces for double cones in the vacuum sector of a massive scalar free field in
(
1
+
1
)
- and
(
3
+
1
)
-dimensional Minkowski spacetime, using a discretization of time-0 data in position space. In the case of a wedge region, one component of the modular generator is well known to be a mass-independent multiplication operator; our results strongly suggest that for the double cone, the corresponding component is still at least close to a multiplication operator, but that it is dependent on mass and angular momentum. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-023-01311-3 |