Beurling-Type Density Criteria for System Identification
This paper addresses the problem of identifying a linear time-varying (LTV) system characterized by a (possibly infinite) discrete set of delay-Doppler shifts without a lattice (or other “geometry-discretizing”) constraint on the support set. Concretely, we show that a class of such LTV systems is i...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2023-08, Vol.29 (4), Article 45 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the problem of identifying a linear time-varying (LTV) system characterized by a (possibly infinite) discrete set of delay-Doppler shifts without a lattice (or other “geometry-discretizing”) constraint on the support set. Concretely, we show that a class of such LTV systems is identifiable whenever the upper uniform Beurling density of the delay-Doppler support sets, measured “uniformly over the class”, is strictly less than 1/2. The proof of this result reveals an interesting relation between LTV system identification and interpolation in the Bargmann-Fock space. Moreover, we show that the density condition we obtain is also necessary for classes of systems invariant under time-frequency shifts and closed under a natural topology on the support sets. We furthermore find that identifiability guarantees robust recovery of the delay-Doppler support set, as well as the weights of the individual delay-Doppler shifts, both in the sense of asymptotically vanishing reconstruction error for vanishing measurement error. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-023-10020-8 |