Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation
In this paper one-dimensional generalized eighth-order Boussinesq equation u tt - ∂ x 2 u + β ∂ x 4 u - ∂ x 6 u + ∂ x 8 u + ( u 3 ) xx = 0 , β = ± 1 with the boundary conditions u ( 0 , t ) = u ( π , t ) = u xx ( 0 , t ) = u xx ( π , t ) = u xxxx ( 0 , t ) = u xxxx ( π , t ) = 0 is considered. It is...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2023-12, Vol.22 (4), Article 139 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Qualitative theory of dynamical systems |
container_volume | 22 |
creator | Shi, Yanling Xu, Junxiang |
description | In this paper one-dimensional generalized eighth-order Boussinesq equation
u
tt
-
∂
x
2
u
+
β
∂
x
4
u
-
∂
x
6
u
+
∂
x
8
u
+
(
u
3
)
xx
=
0
,
β
=
±
1
with the boundary conditions
u
(
0
,
t
)
=
u
(
π
,
t
)
=
u
xx
(
0
,
t
)
=
u
xx
(
π
,
t
)
=
u
xxxx
(
0
,
t
)
=
u
xxxx
(
π
,
t
)
=
0
is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form. |
doi_str_mv | 10.1007/s12346-023-00840-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2842544549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842544549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e1b4af2ac0aa57176f587ab57c58879fa86ddefc7d07ab6d98b0d5abec201f043</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm4_do5baikIR9Ryym6Sm1E2bdCn6601dwZunGYb3eQcehC4JXBMAeZMILZnAQEsMUDHA-yM0IkJQXPKaHuedS445E3CKzlJaAQgqSzpCj8-9Th5vbPTB-LZ4Cet-50OXChdioYuZ7WzUa_9lTTH3y3cb8SIaG4u70KfkO5u2xXTb6wNzjk6cXid78TvH6O1--jqZ46fF7GFy-4TbktQ7bEnDtKO6Ba25JFI4XkndcNnyqpK105UwxrpWGshnYeqqAcN1Y1sKxAErx-hq6N3EsO1t2qlV6GOXXypaMcoZ46zOKTqk2hhSitapTfQfOn4qAuogTQ3SVJamfqSpfYbKAUo53C1t_Kv-h_oGr9Vw9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842544549</pqid></control><display><type>article</type><title>Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shi, Yanling ; Xu, Junxiang</creator><creatorcontrib>Shi, Yanling ; Xu, Junxiang</creatorcontrib><description>In this paper one-dimensional generalized eighth-order Boussinesq equation
u
tt
-
∂
x
2
u
+
β
∂
x
4
u
-
∂
x
6
u
+
∂
x
8
u
+
(
u
3
)
xx
=
0
,
β
=
±
1
with the boundary conditions
u
(
0
,
t
)
=
u
(
π
,
t
)
=
u
xx
(
0
,
t
)
=
u
xx
(
π
,
t
)
=
u
xxxx
(
0
,
t
)
=
u
xxxx
(
π
,
t
)
=
0
is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-023-00840-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Boussinesq equations ; Canonical forms ; Difference and Functional Equations ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics</subject><ispartof>Qualitative theory of dynamical systems, 2023-12, Vol.22 (4), Article 139</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e1b4af2ac0aa57176f587ab57c58879fa86ddefc7d07ab6d98b0d5abec201f043</citedby><cites>FETCH-LOGICAL-c319t-e1b4af2ac0aa57176f587ab57c58879fa86ddefc7d07ab6d98b0d5abec201f043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12346-023-00840-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12346-023-00840-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shi, Yanling</creatorcontrib><creatorcontrib>Xu, Junxiang</creatorcontrib><title>Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation</title><title>Qualitative theory of dynamical systems</title><addtitle>Qual. Theory Dyn. Syst</addtitle><description>In this paper one-dimensional generalized eighth-order Boussinesq equation
u
tt
-
∂
x
2
u
+
β
∂
x
4
u
-
∂
x
6
u
+
∂
x
8
u
+
(
u
3
)
xx
=
0
,
β
=
±
1
with the boundary conditions
u
(
0
,
t
)
=
u
(
π
,
t
)
=
u
xx
(
0
,
t
)
=
u
xx
(
π
,
t
)
=
u
xxxx
(
0
,
t
)
=
u
xxxx
(
π
,
t
)
=
0
is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form.</description><subject>Boundary conditions</subject><subject>Boussinesq equations</subject><subject>Canonical forms</subject><subject>Difference and Functional Equations</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm4_do5baikIR9Ryym6Sm1E2bdCn6601dwZunGYb3eQcehC4JXBMAeZMILZnAQEsMUDHA-yM0IkJQXPKaHuedS445E3CKzlJaAQgqSzpCj8-9Th5vbPTB-LZ4Cet-50OXChdioYuZ7WzUa_9lTTH3y3cb8SIaG4u70KfkO5u2xXTb6wNzjk6cXid78TvH6O1--jqZ46fF7GFy-4TbktQ7bEnDtKO6Ba25JFI4XkndcNnyqpK105UwxrpWGshnYeqqAcN1Y1sKxAErx-hq6N3EsO1t2qlV6GOXXypaMcoZ46zOKTqk2hhSitapTfQfOn4qAuogTQ3SVJamfqSpfYbKAUo53C1t_Kv-h_oGr9Vw9w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Shi, Yanling</creator><creator>Xu, Junxiang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation</title><author>Shi, Yanling ; Xu, Junxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e1b4af2ac0aa57176f587ab57c58879fa86ddefc7d07ab6d98b0d5abec201f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Boussinesq equations</topic><topic>Canonical forms</topic><topic>Difference and Functional Equations</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yanling</creatorcontrib><creatorcontrib>Xu, Junxiang</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yanling</au><au>Xu, Junxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><stitle>Qual. Theory Dyn. Syst</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><artnum>139</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this paper one-dimensional generalized eighth-order Boussinesq equation
u
tt
-
∂
x
2
u
+
β
∂
x
4
u
-
∂
x
6
u
+
∂
x
8
u
+
(
u
3
)
xx
=
0
,
β
=
±
1
with the boundary conditions
u
(
0
,
t
)
=
u
(
π
,
t
)
=
u
xx
(
0
,
t
)
=
u
xx
(
π
,
t
)
=
u
xxxx
(
0
,
t
)
=
u
xxxx
(
π
,
t
)
=
0
is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12346-023-00840-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1575-5460 |
ispartof | Qualitative theory of dynamical systems, 2023-12, Vol.22 (4), Article 139 |
issn | 1575-5460 1662-3592 |
language | eng |
recordid | cdi_proquest_journals_2842544549 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary conditions Boussinesq equations Canonical forms Difference and Functional Equations Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics |
title | Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-periodic%20Solutions%20for%20a%20Generalized%20Higher-Order%20Boussinesq%20Equation&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Shi,%20Yanling&rft.date=2023-12-01&rft.volume=22&rft.issue=4&rft.artnum=139&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-023-00840-w&rft_dat=%3Cproquest_cross%3E2842544549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842544549&rft_id=info:pmid/&rfr_iscdi=true |