Quasi-periodic Solutions for a Generalized Higher-Order Boussinesq Equation

In this paper one-dimensional generalized eighth-order Boussinesq equation u tt - ∂ x 2 u + β ∂ x 4 u - ∂ x 6 u + ∂ x 8 u + ( u 3 ) xx = 0 , β = ± 1 with the boundary conditions u ( 0 , t ) = u ( π , t ) = u xx ( 0 , t ) = u xx ( π , t ) = u xxxx ( 0 , t ) = u xxxx ( π , t ) = 0 is considered. It is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2023-12, Vol.22 (4), Article 139
Hauptverfasser: Shi, Yanling, Xu, Junxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper one-dimensional generalized eighth-order Boussinesq equation u tt - ∂ x 2 u + β ∂ x 4 u - ∂ x 6 u + ∂ x 8 u + ( u 3 ) xx = 0 , β = ± 1 with the boundary conditions u ( 0 , t ) = u ( π , t ) = u xx ( 0 , t ) = u xx ( π , t ) = u xxxx ( 0 , t ) = u xxxx ( π , t ) = 0 is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-023-00840-w