Jónsson Jónsson–Tarski algebras

By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2023-08, Vol.84 (3), Article 26
1. Verfasser: DuBeau, Jordan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Algebra universalis
container_volume 84
creator DuBeau, Jordan
description By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra of size | J |. Second, if an algebra J in a language L satisfies cf ( | J | ) > 2 | L | + and lies in a residually small variety, then it again must have a proper subalgebra of size | J |. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than ℵ 1 . We also construct 2 ℵ 1 many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.
doi_str_mv 10.1007/s00012-023-00824-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2842543023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842543023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3b18f28b61d0d3cbd007320428c40a8c8b2f3596bedae0e9c6f0d391befe05aa3</originalsourceid><addsrcrecordid>eNp9kE1OAzEMhSMEEqVwAVaVug44TmYms0QVv6rEpqyjJJNULWWmxO2CHXfgKByBm3ASUgbEjpUt-XvP9mPsVMCZAKjOCQAEckDJATQqXu6xgVAIXNdC7LNBniMvUMEhOyJa7uiqLgZsfPfx3hJ17ei3-Xx9m9lEj4uRXc2DS5aO2UG0KwonP3XIHq4uZ5MbPr2_vp1cTLnHCjZcOqEjaleKBhrpXZMPkwgKtVdgtdcOoyzq0oXGBgi1L2PmauFCDFBYK4ds3PuuU_e8DbQxy26b2rzSoFZYKJn_yxT2lE8dUQrRrNPiyaYXI8DswjB9GCbD5jsMU2aR7EWU4XYe0p_1P6ovchZi2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842543023</pqid></control><display><type>article</type><title>Jónsson Jónsson–Tarski algebras</title><source>SpringerNature Journals</source><creator>DuBeau, Jordan</creator><creatorcontrib>DuBeau, Jordan</creatorcontrib><description>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra of size | J |. Second, if an algebra J in a language L satisfies cf ( | J | ) &gt; 2 | L | + and lies in a residually small variety, then it again must have a proper subalgebra of size | J |. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than ℵ 1 . We also construct 2 ℵ 1 many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-023-00824-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Algebra universalis, 2023-08, Vol.84 (3), Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3b18f28b61d0d3cbd007320428c40a8c8b2f3596bedae0e9c6f0d391befe05aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00012-023-00824-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00012-023-00824-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>DuBeau, Jordan</creatorcontrib><title>Jónsson Jónsson–Tarski algebras</title><title>Algebra universalis</title><addtitle>Algebra Univers</addtitle><description>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra of size | J |. Second, if an algebra J in a language L satisfies cf ( | J | ) &gt; 2 | L | + and lies in a residually small variety, then it again must have a proper subalgebra of size | J |. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than ℵ 1 . We also construct 2 ℵ 1 many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OAzEMhSMEEqVwAVaVug44TmYms0QVv6rEpqyjJJNULWWmxO2CHXfgKByBm3ASUgbEjpUt-XvP9mPsVMCZAKjOCQAEckDJATQqXu6xgVAIXNdC7LNBniMvUMEhOyJa7uiqLgZsfPfx3hJ17ei3-Xx9m9lEj4uRXc2DS5aO2UG0KwonP3XIHq4uZ5MbPr2_vp1cTLnHCjZcOqEjaleKBhrpXZMPkwgKtVdgtdcOoyzq0oXGBgi1L2PmauFCDFBYK4ds3PuuU_e8DbQxy26b2rzSoFZYKJn_yxT2lE8dUQrRrNPiyaYXI8DswjB9GCbD5jsMU2aR7EWU4XYe0p_1P6ovchZi2Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>DuBeau, Jordan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Jónsson Jónsson–Tarski algebras</title><author>DuBeau, Jordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3b18f28b61d0d3cbd007320428c40a8c8b2f3596bedae0e9c6f0d391befe05aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuBeau, Jordan</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuBeau, Jordan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jónsson Jónsson–Tarski algebras</atitle><jtitle>Algebra universalis</jtitle><stitle>Algebra Univers</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>84</volume><issue>3</issue><artnum>26</artnum><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra of size | J |. Second, if an algebra J in a language L satisfies cf ( | J | ) &gt; 2 | L | + and lies in a residually small variety, then it again must have a proper subalgebra of size | J |. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than ℵ 1 . We also construct 2 ℵ 1 many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00012-023-00824-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-5240
ispartof Algebra universalis, 2023-08, Vol.84 (3), Article 26
issn 0002-5240
1420-8911
language eng
recordid cdi_proquest_journals_2842543023
source SpringerNature Journals
subjects Algebra
Mathematics
Mathematics and Statistics
title Jónsson Jónsson–Tarski algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=J%C3%B3nsson%20J%C3%B3nsson%E2%80%93Tarski%20algebras&rft.jtitle=Algebra%20universalis&rft.au=DuBeau,%20Jordan&rft.date=2023-08-01&rft.volume=84&rft.issue=3&rft.artnum=26&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-023-00824-6&rft_dat=%3Cproquest_cross%3E2842543023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842543023&rft_id=info:pmid/&rfr_iscdi=true