Jónsson Jónsson–Tarski algebras
By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra o...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 2023-08, Vol.84 (3), Article 26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Algebra universalis |
container_volume | 84 |
creator | DuBeau, Jordan |
description | By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra
J
in a language
L
has cardinality greater than
|
L
|
+
and a distributive subalgebra lattice, then it must have a proper subalgebra of size |
J
|. Second, if an algebra
J
in a language
L
satisfies
cf
(
|
J
|
)
>
2
|
L
|
+
and lies in a residually small variety, then it again must have a proper subalgebra of size |
J
|. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than
ℵ
1
. We also construct
2
ℵ
1
many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved. |
doi_str_mv | 10.1007/s00012-023-00824-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2842543023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842543023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3b18f28b61d0d3cbd007320428c40a8c8b2f3596bedae0e9c6f0d391befe05aa3</originalsourceid><addsrcrecordid>eNp9kE1OAzEMhSMEEqVwAVaVug44TmYms0QVv6rEpqyjJJNULWWmxO2CHXfgKByBm3ASUgbEjpUt-XvP9mPsVMCZAKjOCQAEckDJATQqXu6xgVAIXNdC7LNBniMvUMEhOyJa7uiqLgZsfPfx3hJ17ei3-Xx9m9lEj4uRXc2DS5aO2UG0KwonP3XIHq4uZ5MbPr2_vp1cTLnHCjZcOqEjaleKBhrpXZMPkwgKtVdgtdcOoyzq0oXGBgi1L2PmauFCDFBYK4ds3PuuU_e8DbQxy26b2rzSoFZYKJn_yxT2lE8dUQrRrNPiyaYXI8DswjB9GCbD5jsMU2aR7EWU4XYe0p_1P6ovchZi2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842543023</pqid></control><display><type>article</type><title>Jónsson Jónsson–Tarski algebras</title><source>SpringerNature Journals</source><creator>DuBeau, Jordan</creator><creatorcontrib>DuBeau, Jordan</creatorcontrib><description>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra
J
in a language
L
has cardinality greater than
|
L
|
+
and a distributive subalgebra lattice, then it must have a proper subalgebra of size |
J
|. Second, if an algebra
J
in a language
L
satisfies
cf
(
|
J
|
)
>
2
|
L
|
+
and lies in a residually small variety, then it again must have a proper subalgebra of size |
J
|. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than
ℵ
1
. We also construct
2
ℵ
1
many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-023-00824-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics</subject><ispartof>Algebra universalis, 2023-08, Vol.84 (3), Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3b18f28b61d0d3cbd007320428c40a8c8b2f3596bedae0e9c6f0d391befe05aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00012-023-00824-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00012-023-00824-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>DuBeau, Jordan</creatorcontrib><title>Jónsson Jónsson–Tarski algebras</title><title>Algebra universalis</title><addtitle>Algebra Univers</addtitle><description>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra
J
in a language
L
has cardinality greater than
|
L
|
+
and a distributive subalgebra lattice, then it must have a proper subalgebra of size |
J
|. Second, if an algebra
J
in a language
L
satisfies
cf
(
|
J
|
)
>
2
|
L
|
+
and lies in a residually small variety, then it again must have a proper subalgebra of size |
J
|. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than
ℵ
1
. We also construct
2
ℵ
1
many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OAzEMhSMEEqVwAVaVug44TmYms0QVv6rEpqyjJJNULWWmxO2CHXfgKByBm3ASUgbEjpUt-XvP9mPsVMCZAKjOCQAEckDJATQqXu6xgVAIXNdC7LNBniMvUMEhOyJa7uiqLgZsfPfx3hJ17ei3-Xx9m9lEj4uRXc2DS5aO2UG0KwonP3XIHq4uZ5MbPr2_vp1cTLnHCjZcOqEjaleKBhrpXZMPkwgKtVdgtdcOoyzq0oXGBgi1L2PmauFCDFBYK4ds3PuuU_e8DbQxy26b2rzSoFZYKJn_yxT2lE8dUQrRrNPiyaYXI8DswjB9GCbD5jsMU2aR7EWU4XYe0p_1P6ovchZi2Q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>DuBeau, Jordan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Jónsson Jónsson–Tarski algebras</title><author>DuBeau, Jordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3b18f28b61d0d3cbd007320428c40a8c8b2f3596bedae0e9c6f0d391befe05aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuBeau, Jordan</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuBeau, Jordan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jónsson Jónsson–Tarski algebras</atitle><jtitle>Algebra universalis</jtitle><stitle>Algebra Univers</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>84</volume><issue>3</issue><artnum>26</artnum><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra
J
in a language
L
has cardinality greater than
|
L
|
+
and a distributive subalgebra lattice, then it must have a proper subalgebra of size |
J
|. Second, if an algebra
J
in a language
L
satisfies
cf
(
|
J
|
)
>
2
|
L
|
+
and lies in a residually small variety, then it again must have a proper subalgebra of size |
J
|. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than
ℵ
1
. We also construct
2
ℵ
1
many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00012-023-00824-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-5240 |
ispartof | Algebra universalis, 2023-08, Vol.84 (3), Article 26 |
issn | 0002-5240 1420-8911 |
language | eng |
recordid | cdi_proquest_journals_2842543023 |
source | SpringerNature Journals |
subjects | Algebra Mathematics Mathematics and Statistics |
title | Jónsson Jónsson–Tarski algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=J%C3%B3nsson%20J%C3%B3nsson%E2%80%93Tarski%20algebras&rft.jtitle=Algebra%20universalis&rft.au=DuBeau,%20Jordan&rft.date=2023-08-01&rft.volume=84&rft.issue=3&rft.artnum=26&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-023-00824-6&rft_dat=%3Cproquest_cross%3E2842543023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842543023&rft_id=info:pmid/&rfr_iscdi=true |