Jónsson Jónsson–Tarski algebras

By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2023-08, Vol.84 (3), Article 26
1. Verfasser: DuBeau, Jordan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By studying the variety of Jónsson–Tarski algebras, we demonstrate two obstacles to the existence of large Jónsson algebras in certain varieties. First, if an algebra J in a language L has cardinality greater than | L | + and a distributive subalgebra lattice, then it must have a proper subalgebra of size | J |. Second, if an algebra J in a language L satisfies cf ( | J | ) > 2 | L | + and lies in a residually small variety, then it again must have a proper subalgebra of size | J |. We apply the first result to show that Jónsson algebras in the variety of Jónsson–Tarski algebras cannot have cardinality greater than ℵ 1 . We also construct 2 ℵ 1 many pairwise nonisomorphic Jónsson algebras in this variety, thus proving that for some varieties the maximum possible number of Jónsson algebras can be achieved.
ISSN:0002-5240
1420-8911
DOI:10.1007/s00012-023-00824-6