Principal Component Analysis-Based Data Clustering for Labeling of Level Damage Sector in Post-Natural Disasters

Post-disaster sector damage data is data that has features or criteria in each case the level of damage to the post-natural disaster sector data. These criteria data are building conditions, building structures, building physicals, building functions, and other supporting conditions. Data on the lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Almais, Agung Teguh Wibowo, Susilo, Adi, Naba, Agus, Sarosa, Moechammad, Crysdian, Cahyo, Wicaksono, Hendro, Tazi, Imam, Hariyadi, Mokhamad Amin, Muslim, Muhammad Aziz, Basid, Puspa Miladin Nuraida Safitri Abdul, Arif, Yunifa Miftachul, Purwanto, Mohammad Singgih, Parwatiningtyas, Diyan, Supriyono
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Post-disaster sector damage data is data that has features or criteria in each case the level of damage to the post-natural disaster sector data. These criteria data are building conditions, building structures, building physicals, building functions, and other supporting conditions. Data on the level of damage to the post-natural disaster sector used in this study amounted to 216 data, each of which has 5 criteria for damage to the post-natural disaster sector. Then the 216 post-disaster sector damage data were processed using Principal Component Analysis (PCA) to look for labels in each data. The results of these labels will be used to cluster data based on the value scale of the results of data normalization in the PCA process. In the data normalization process at PCA, the data is divided into 2 components, namely PC1 and PC2. Each component has a variance ratio and eigenvalue generated in the PCA process. For PC1 it has a variance ratio of 85.17% and an eigenvalue of 4.28%, while PC2 has a variance ratio of 9.36% and an eigenvalue of 0.47%. The results of the data normalization are then made into a 2-dimensional graph to see the visualization of the PCA results data. The result is that there is 3 data cluster using a value scale based on the PCA results chart. The coordinate value (n) of each cluster is cluster 1 (n
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3275852