Transcendental solutions of Fermat-type functional equations in Cn

The equation f n + g n = 1 can be interpreted as the Fermat Diophantine equation x n + y n = 1 within the function field when n is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2023, Vol.13 (5)
Hauptverfasser: Ahamed, Molla Basir, Allu, Vasudevarao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Analysis and mathematical physics
container_volume 13
creator Ahamed, Molla Basir
Allu, Vasudevarao
description The equation f n + g n = 1 can be interpreted as the Fermat Diophantine equation x n + y n = 1 within the function field when n is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polynomial coefficients in C n . If the coefficients of the equation are transcendental functions and satisfy a certain relationship, we show that transcendental solutions can be obtained. Moreover, we determine the precise form of the solutions in both cases.
doi_str_mv 10.1007/s13324-023-00828-4
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2841971521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841971521</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-39605373fb0d8eb9b0f38b27f41feba2b89d9912d976a9ea7171c4caff58e7023</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouKz7BzwVPEdnkjQfRy2uCgteVvAW0jaRLjXtNu3Bf2_Xip7mhXl4mXkIuUa4RQB1l5BzJigwTgE001SckRVKKSjj-fv5X5b6kmxSOgAAilwKqVbkYT-4mCofax9H12apa6ex6WLKupBt_fDpRjp-9T4LU6xOi5nxx8ktTBOzIl6Ri-Da5De_c03eto_74pnuXp9eivsd7TFXI-VGQs4VDyXU2pemhMB1yVQQGHzpWKlNbQyy2ijpjHcKFVaiciHk2qv5uTW5WXr7oTtOPo320E3DfFCyTAs0CnOGM8UXKvVDEz_88E8h2JMvu_iyc6X98WUF_waKSF24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841971521</pqid></control><display><type>article</type><title>Transcendental solutions of Fermat-type functional equations in Cn</title><source>SpringerNature Journals</source><creator>Ahamed, Molla Basir ; Allu, Vasudevarao</creator><creatorcontrib>Ahamed, Molla Basir ; Allu, Vasudevarao</creatorcontrib><description>The equation f n + g n = 1 can be interpreted as the Fermat Diophantine equation x n + y n = 1 within the function field when n is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polynomial coefficients in C n . If the coefficients of the equation are transcendental functions and satisfy a certain relationship, we show that transcendental solutions can be obtained. Moreover, we determine the precise form of the solutions in both cases.</description><identifier>ISSN: 1664-2368</identifier><identifier>EISSN: 1664-235X</identifier><identifier>DOI: 10.1007/s13324-023-00828-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Complex variables ; Diophantine equation ; Functional equations ; Mathematical analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Polynomials ; Transcendental functions</subject><ispartof>Analysis and mathematical physics, 2023, Vol.13 (5)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-39605373fb0d8eb9b0f38b27f41feba2b89d9912d976a9ea7171c4caff58e7023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13324-023-00828-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13324-023-00828-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ahamed, Molla Basir</creatorcontrib><creatorcontrib>Allu, Vasudevarao</creatorcontrib><title>Transcendental solutions of Fermat-type functional equations in Cn</title><title>Analysis and mathematical physics</title><addtitle>Anal.Math.Phys</addtitle><description>The equation f n + g n = 1 can be interpreted as the Fermat Diophantine equation x n + y n = 1 within the function field when n is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polynomial coefficients in C n . If the coefficients of the equation are transcendental functions and satisfy a certain relationship, we show that transcendental solutions can be obtained. Moreover, we determine the precise form of the solutions in both cases.</description><subject>Analysis</subject><subject>Complex variables</subject><subject>Diophantine equation</subject><subject>Functional equations</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Transcendental functions</subject><issn>1664-2368</issn><issn>1664-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouKz7BzwVPEdnkjQfRy2uCgteVvAW0jaRLjXtNu3Bf2_Xip7mhXl4mXkIuUa4RQB1l5BzJigwTgE001SckRVKKSjj-fv5X5b6kmxSOgAAilwKqVbkYT-4mCofax9H12apa6ex6WLKupBt_fDpRjp-9T4LU6xOi5nxx8ktTBOzIl6Ri-Da5De_c03eto_74pnuXp9eivsd7TFXI-VGQs4VDyXU2pemhMB1yVQQGHzpWKlNbQyy2ijpjHcKFVaiciHk2qv5uTW5WXr7oTtOPo320E3DfFCyTAs0CnOGM8UXKvVDEz_88E8h2JMvu_iyc6X98WUF_waKSF24</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ahamed, Molla Basir</creator><creator>Allu, Vasudevarao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>Transcendental solutions of Fermat-type functional equations in Cn</title><author>Ahamed, Molla Basir ; Allu, Vasudevarao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-39605373fb0d8eb9b0f38b27f41feba2b89d9912d976a9ea7171c4caff58e7023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Complex variables</topic><topic>Diophantine equation</topic><topic>Functional equations</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Transcendental functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahamed, Molla Basir</creatorcontrib><creatorcontrib>Allu, Vasudevarao</creatorcontrib><jtitle>Analysis and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahamed, Molla Basir</au><au>Allu, Vasudevarao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcendental solutions of Fermat-type functional equations in Cn</atitle><jtitle>Analysis and mathematical physics</jtitle><stitle>Anal.Math.Phys</stitle><date>2023</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><issn>1664-2368</issn><eissn>1664-235X</eissn><abstract>The equation f n + g n = 1 can be interpreted as the Fermat Diophantine equation x n + y n = 1 within the function field when n is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polynomial coefficients in C n . If the coefficients of the equation are transcendental functions and satisfy a certain relationship, we show that transcendental solutions can be obtained. Moreover, we determine the precise form of the solutions in both cases.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13324-023-00828-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1664-2368
ispartof Analysis and mathematical physics, 2023, Vol.13 (5)
issn 1664-2368
1664-235X
language eng
recordid cdi_proquest_journals_2841971521
source SpringerNature Journals
subjects Analysis
Complex variables
Diophantine equation
Functional equations
Mathematical analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Polynomials
Transcendental functions
title Transcendental solutions of Fermat-type functional equations in Cn
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcendental%20solutions%20of%20Fermat-type%20functional%20equations%20in%20Cn&rft.jtitle=Analysis%20and%20mathematical%20physics&rft.au=Ahamed,%20Molla%20Basir&rft.date=2023&rft.volume=13&rft.issue=5&rft.issn=1664-2368&rft.eissn=1664-235X&rft_id=info:doi/10.1007/s13324-023-00828-4&rft_dat=%3Cproquest_sprin%3E2841971521%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841971521&rft_id=info:pmid/&rfr_iscdi=true