Transcendental solutions of Fermat-type functional equations in Cn
The equation f n + g n = 1 can be interpreted as the Fermat Diophantine equation x n + y n = 1 within the function field when n is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polyn...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2023, Vol.13 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The equation
f
n
+
g
n
=
1
can be interpreted as the Fermat Diophantine equation
x
n
+
y
n
=
1
within the function field when
n
is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polynomial coefficients in
C
n
. If the coefficients of the equation are transcendental functions and satisfy a certain relationship, we show that transcendental solutions can be obtained. Moreover, we determine the precise form of the solutions in both cases. |
---|---|
ISSN: | 1664-2368 1664-235X |
DOI: | 10.1007/s13324-023-00828-4 |