Sustainability assessment of biojet fuel produced from pyrolysis oil of woody biomass

Chemical processing has the potential to enable woody biomass to replace petroleum consumption as a sustainable carbon source. However, in order for this to be viable, the cost of biofuels must be comparable to that of conventional fuels derived from petroleum. This study evaluates the economic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2023-07, Vol.7 (15), p.3625-3636
Hauptverfasser: Fitriasari, Eprillia Intan, Won, Wangyun, Jay Liu, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical processing has the potential to enable woody biomass to replace petroleum consumption as a sustainable carbon source. However, in order for this to be viable, the cost of biofuels must be comparable to that of conventional fuels derived from petroleum. This study evaluates the economic and environmental sustainability of biojet fuel produced from woody biomass. Woody biomass is converted into bio-oil via fast pyrolysis with in situ vapor upgrading. Bio-oil is then condensed, separated, and hydroprocessed to produce biojet fuel. Additionally, gasoline is produced as a side product. The processes were modeled using a process simulator. The results of process modeling were used for economic and environmental assessments and were then compared with conventional jet fuel. The results show that biojet fuel is cost-competitive with conventional jet fuel and has lower environmental impacts. The gasoline product was also considered in economic and environmental assessments. The economic analysis shows that the minimum fuel selling price (MFSP) of biojet fuel is $1.03 per L, with capital and feedstock costs being the main contributors to production expenses. The results of sensitivity analysis indicate that changes in gasoline price are the most significant factor impacting MFSP. According to Monte Carlo analysis, biojet fuel production has a 58.80% probability of investment risk. The life cycle assessment (LCA) indicates that biojet fuel reduces greenhouse gas (GHG) emissions by up to 95.27% compared to conventional jet fuel. LCA sensitivity analysis results show that changes in gasoline yield have the greatest impact on GHG emissions. Overall, the study suggests that biojet fuel production can offer both economic and environmental benefits. Biojet fuel production from woody biomass pyrolysis oil demonstrates economic viability at MFSP of $1.03 per L, while also reducing GHG emissions by up to 95.27% compared to conventional jet fuel production, providing environmental benefits.
ISSN:2398-4902
2398-4902
DOI:10.1039/d3se00468f