FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation

We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Pai, Dhruv, Carranza, Andres, Schaeffer, Rylan, Tandon, Arnuv, Koyejo, Sanmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pai, Dhruv
Carranza, Andres
Schaeffer, Rylan
Tandon, Arnuv
Koyejo, Sanmi
description We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2840416999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840416999</sourcerecordid><originalsourceid>FETCH-proquest_journals_28404169993</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCZtbd2FfnDh0r2ENoXUNNF8Kt5eBQ_gahhmVigilKZJmRGyQbFzE8aYFAeS5zRC547VrGmPwKCzfBZPY28wGgtsWIR13EquoJa2D9ID02bm6gWN8KL30mjgeoB24Srwr-7QeuTKifjHLdp37aU-JXdrHkE4f51MsPqTrqTMcJYWVVXR_643gcQ8WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840416999</pqid></control><display><type>article</type><title>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</title><source>Free E- Journals</source><creator>Pai, Dhruv ; Carranza, Andres ; Schaeffer, Rylan ; Tandon, Arnuv ; Koyejo, Sanmi</creator><creatorcontrib>Pai, Dhruv ; Carranza, Andres ; Schaeffer, Rylan ; Tandon, Arnuv ; Koyejo, Sanmi</creatorcontrib><description>We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Artificial neural networks ; Circuits ; Facades ; Probability theory</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Pai, Dhruv</creatorcontrib><creatorcontrib>Carranza, Andres</creatorcontrib><creatorcontrib>Schaeffer, Rylan</creatorcontrib><creatorcontrib>Tandon, Arnuv</creatorcontrib><creatorcontrib>Koyejo, Sanmi</creatorcontrib><title>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</title><title>arXiv.org</title><description>We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Facades</subject><subject>Probability theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCZtbd2FfnDh0r2ENoXUNNF8Kt5eBQ_gahhmVigilKZJmRGyQbFzE8aYFAeS5zRC547VrGmPwKCzfBZPY28wGgtsWIR13EquoJa2D9ID02bm6gWN8KL30mjgeoB24Srwr-7QeuTKifjHLdp37aU-JXdrHkE4f51MsPqTrqTMcJYWVVXR_643gcQ8WQ</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Pai, Dhruv</creator><creator>Carranza, Andres</creator><creator>Schaeffer, Rylan</creator><creator>Tandon, Arnuv</creator><creator>Koyejo, Sanmi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230720</creationdate><title>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</title><author>Pai, Dhruv ; Carranza, Andres ; Schaeffer, Rylan ; Tandon, Arnuv ; Koyejo, Sanmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28404169993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Facades</topic><topic>Probability theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Pai, Dhruv</creatorcontrib><creatorcontrib>Carranza, Andres</creatorcontrib><creatorcontrib>Schaeffer, Rylan</creatorcontrib><creatorcontrib>Tandon, Arnuv</creatorcontrib><creatorcontrib>Koyejo, Sanmi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, Dhruv</au><au>Carranza, Andres</au><au>Schaeffer, Rylan</au><au>Tandon, Arnuv</au><au>Koyejo, Sanmi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</atitle><jtitle>arXiv.org</jtitle><date>2023-07-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2840416999
source Free E- Journals
subjects Anomalies
Artificial neural networks
Circuits
Facades
Probability theory
title FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=FACADE:%20A%20Framework%20for%20Adversarial%20Circuit%20Anomaly%20Detection%20and%20Evaluation&rft.jtitle=arXiv.org&rft.au=Pai,%20Dhruv&rft.date=2023-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2840416999%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840416999&rft_id=info:pmid/&rfr_iscdi=true