FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation
We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pai, Dhruv Carranza, Andres Schaeffer, Rylan Tandon, Arnuv Koyejo, Sanmi |
description | We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2840416999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2840416999</sourcerecordid><originalsourceid>FETCH-proquest_journals_28404169993</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCZtbd2FfnDh0r2ENoXUNNF8Kt5eBQ_gahhmVigilKZJmRGyQbFzE8aYFAeS5zRC547VrGmPwKCzfBZPY28wGgtsWIR13EquoJa2D9ID02bm6gWN8KL30mjgeoB24Srwr-7QeuTKifjHLdp37aU-JXdrHkE4f51MsPqTrqTMcJYWVVXR_643gcQ8WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840416999</pqid></control><display><type>article</type><title>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</title><source>Free E- Journals</source><creator>Pai, Dhruv ; Carranza, Andres ; Schaeffer, Rylan ; Tandon, Arnuv ; Koyejo, Sanmi</creator><creatorcontrib>Pai, Dhruv ; Carranza, Andres ; Schaeffer, Rylan ; Tandon, Arnuv ; Koyejo, Sanmi</creatorcontrib><description>We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Artificial neural networks ; Circuits ; Facades ; Probability theory</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Pai, Dhruv</creatorcontrib><creatorcontrib>Carranza, Andres</creatorcontrib><creatorcontrib>Schaeffer, Rylan</creatorcontrib><creatorcontrib>Tandon, Arnuv</creatorcontrib><creatorcontrib>Koyejo, Sanmi</creatorcontrib><title>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</title><title>arXiv.org</title><description>We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Circuits</subject><subject>Facades</subject><subject>Probability theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCZtbd2FfnDh0r2ENoXUNNF8Kt5eBQ_gahhmVigilKZJmRGyQbFzE8aYFAeS5zRC547VrGmPwKCzfBZPY28wGgtsWIR13EquoJa2D9ID02bm6gWN8KL30mjgeoB24Srwr-7QeuTKifjHLdp37aU-JXdrHkE4f51MsPqTrqTMcJYWVVXR_643gcQ8WQ</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Pai, Dhruv</creator><creator>Carranza, Andres</creator><creator>Schaeffer, Rylan</creator><creator>Tandon, Arnuv</creator><creator>Koyejo, Sanmi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230720</creationdate><title>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</title><author>Pai, Dhruv ; Carranza, Andres ; Schaeffer, Rylan ; Tandon, Arnuv ; Koyejo, Sanmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28404169993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Circuits</topic><topic>Facades</topic><topic>Probability theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Pai, Dhruv</creatorcontrib><creatorcontrib>Carranza, Andres</creatorcontrib><creatorcontrib>Schaeffer, Rylan</creatorcontrib><creatorcontrib>Tandon, Arnuv</creatorcontrib><creatorcontrib>Koyejo, Sanmi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pai, Dhruv</au><au>Carranza, Andres</au><au>Schaeffer, Rylan</au><au>Tandon, Arnuv</au><au>Koyejo, Sanmi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation</atitle><jtitle>arXiv.org</jtitle><date>2023-07-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2840416999 |
source | Free E- Journals |
subjects | Anomalies Artificial neural networks Circuits Facades Probability theory |
title | FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=FACADE:%20A%20Framework%20for%20Adversarial%20Circuit%20Anomaly%20Detection%20and%20Evaluation&rft.jtitle=arXiv.org&rft.au=Pai,%20Dhruv&rft.date=2023-07-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2840416999%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2840416999&rft_id=info:pmid/&rfr_iscdi=true |