FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation

We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Pai, Dhruv, Carranza, Andres, Schaeffer, Rylan, Tandon, Arnuv, Koyejo, Sanmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present FACADE, a novel probabilistic and geometric framework designed for unsupervised mechanistic anomaly detection in deep neural networks. Its primary goal is advancing the understanding and mitigation of adversarial attacks. FACADE aims to generate probabilistic distributions over circuits, which provide critical insights to their contribution to changes in the manifold properties of pseudo-classes, or high-dimensional modes in activation space, yielding a powerful tool for uncovering and combating adversarial attacks. Our approach seeks to improve model robustness, enhance scalable model oversight, and demonstrates promising applications in real-world deployment settings.
ISSN:2331-8422