Fusion Quivers
We develop a categorical approach to quivers and their modules. Naturally this leads to a notion of an action of a monoidal category on quivers. Using this, we construct for a large class of quivers rigid monoidal structures on their categories of modules. This fusion product on the quiver modules i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a categorical approach to quivers and their modules. Naturally this leads to a notion of an action of a monoidal category on quivers. Using this, we construct for a large class of quivers rigid monoidal structures on their categories of modules. This fusion product on the quiver modules induces a graded ring structure with duality and trace on the moduli spaces of semisimple quiver modules. Our approach allows to consider a class of relations on such fusion quivers that are compatible with the rigid monoidal structure. In particular we obtain a class of preprojective algebras with fusion product on their modules. |
---|---|
ISSN: | 2331-8422 |