Large-Area Photonic Bound State in the Continuum for Ultraviolet and Deep-Blue Emission for Organic, Inorganic and Perovskite Scintillators

Optimizing the emission properties of materials in ultraviolet and deep blue (UV-DB) is interesting in development of new scintillator devices for the detection of X-ray, γ-ray and radiation particles as those materials can be strong candidates for high light yield and fast scintillators. While thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2023-07, Vol.70 (7), p.1-1
Hauptverfasser: Kowal, Dominik, Wong, Liang Jie, Birowosuto, Muhammad Danang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimizing the emission properties of materials in ultraviolet and deep blue (UV-DB) is interesting in development of new scintillator devices for the detection of X-ray, γ-ray and radiation particles as those materials can be strong candidates for high light yield and fast scintillators. While their intrinsic material properties are already well studied, photonic enhancement generated through optical confinement could significantly improve their emission characteristics, however one needs to overcome the problem of relatively low refractive indices contrast resulting in poor confinement of UV-DB light. This motivates the search for resonator structures built from readily accessible materials that can boast strong confinement in this spectral regime. Here, we present such a structure, leveraging bound states in the continuum (BICs) to realize large-area confinement of UV-DB light with ultra-high quality factors up to Q ~10 7 . These ultra-high Q -factors in turn result in strong enhancements in light emission via the Purcell effect. We demonstrate the operation of such a design by simulating the mode shape, Q -factor and emission behaviour in organic, hybrid perovskite and III-V scintillating materials. By tailoring the structure geometry, it can be robustly tuned to match the emission characteristics of chosen materials. We start with considering ideal infinite structure supporting perfect BIC and we extend our model on finite sized structures and we discuss the limitations associated with the self-absorption and thickness of the structure. Our findings pave the way to cost-effective and efficient designs for scintillators in the UV-DB regime.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2023.3265414