An adaptive graph embedding method for feature extraction of hyperspectral images based on approximate NMR model

This paper introduces an approximate nuclear norm based matrix regression projection (ANMRP) model, an adaptive graph embedding method, for feature extraction of hyperspectral images. The ANMRP utilizes an approximate NMR model to construct an adaptive neighborhood map between samples. The globally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optoelectronics letters 2023-07, Vol.19 (7), p.443-448
Hauptverfasser: Qiu, Hong, Wang, Renfang, Jin, Heng, Wang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces an approximate nuclear norm based matrix regression projection (ANMRP) model, an adaptive graph embedding method, for feature extraction of hyperspectral images. The ANMRP utilizes an approximate NMR model to construct an adaptive neighborhood map between samples. The globally optimal weight matrix is obtained by optimizing the approximate NMR model using fast alternating direction method of multipliers (ADMM). The optimal projection matrix is then determined by maximizing the ratio of the local scatter matrix to the total scatter matrix, allowing for the extraction of discriminative features. Experimental results demonstrate the effectiveness of ANMRP compared to related methods.
ISSN:1673-1905
1993-5013
DOI:10.1007/s11801-023-3054-5