Spontaneous Stochasticity and Renormalization Group in Discrete Multi-scale Dynamics

We introduce a class of multi-scale systems with discrete time, motivated by the problem of inviscid limit in fluid dynamics in the presence of small-scale noise. These systems are infinite-dimensional and defined on a scale-invariant space-time lattice. We propose a qualitative theory describing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-08, Vol.401 (3), p.2643-2671
Hauptverfasser: Mailybaev, Alexei A., Raibekas, Artem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a class of multi-scale systems with discrete time, motivated by the problem of inviscid limit in fluid dynamics in the presence of small-scale noise. These systems are infinite-dimensional and defined on a scale-invariant space-time lattice. We propose a qualitative theory describing the vanishing regularization (inviscid) limit as an attractor of the renormalization group operator acting in the space of flow maps or respective probability kernels. If the attractor is a nontrivial probability kernel, we say that the inviscid limit is spontaneously stochastic: it defines a stochastic (Markov) process solving deterministic equations with deterministic initial and boundary conditions. The results are illustrated with solvable models: symbolic systems leading to digital turbulence and systems of expanding interacting phases.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-023-04698-6