Batalin–Vilkovisky Quantization and Supersymmetric Twists

We show that a family of topological twists of a supersymmetric mechanics with a Kähler target exhibits a Batalin–Vilkovisky quantization. Using this observation we make a general proposal for the Hilbert space of states after a topological twist in terms of the cohomology of a certain perverse shea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2023-08, Vol.402 (1), p.35-77
Hauptverfasser: Safronov, Pavel, Williams, Brian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a family of topological twists of a supersymmetric mechanics with a Kähler target exhibits a Batalin–Vilkovisky quantization. Using this observation we make a general proposal for the Hilbert space of states after a topological twist in terms of the cohomology of a certain perverse sheaf. We give several examples of the resulting Hilbert spaces including the categorified Donaldson–Thomas invariants, Haydys–Witten theory and the 3-dimensional A-model.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-023-04721-w