Batalin–Vilkovisky Quantization and Supersymmetric Twists
We show that a family of topological twists of a supersymmetric mechanics with a Kähler target exhibits a Batalin–Vilkovisky quantization. Using this observation we make a general proposal for the Hilbert space of states after a topological twist in terms of the cohomology of a certain perverse shea...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2023-08, Vol.402 (1), p.35-77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a family of topological twists of a supersymmetric mechanics with a Kähler target exhibits a Batalin–Vilkovisky quantization. Using this observation we make a general proposal for the Hilbert space of states after a topological twist in terms of the cohomology of a certain perverse sheaf. We give several examples of the resulting Hilbert spaces including the categorified Donaldson–Thomas invariants, Haydys–Witten theory and the 3-dimensional A-model. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-023-04721-w |