Site percolation on pseudo‐random graphs

We consider vertex percolation on pseudo‐random d$$ d $$‐regular graphs. The previous study by the second author established the existence of phase transition from small components to a linear (in nd$$ \frac{n}{d} $$) sized component, at p=1d$$ p=\frac{1}{d} $$. In the supercritical regime, our main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2023-09, Vol.63 (2), p.406-441
Hauptverfasser: Diskin, Sahar, Krivelevich, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider vertex percolation on pseudo‐random d$$ d $$‐regular graphs. The previous study by the second author established the existence of phase transition from small components to a linear (in nd$$ \frac{n}{d} $$) sized component, at p=1d$$ p=\frac{1}{d} $$. In the supercritical regime, our main result recovers the sharp asymptotic of the size of the largest component, and shows that all other components are typically much smaller. Furthermore, we consider other typical properties of the largest component such as the number of edges, existence of a long cycle and expansion. In the subcritical regime, we strengthen the upper bound on the likely component size.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.21141