Photochemical Deracemization of 3‐Substituted Oxindoles

Racemic 3‐substituted oxindoles were successfully converted into enantiomerically pure or enriched material (up to 99 % ee) upon irradiation at λ=366 nm in the presence of a chiral benzophenone catalyst (10 mol %). The photochemical deracemization process allows predictable editing of the stereogeni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (30), p.n/a
Hauptverfasser: Großkopf, Johannes, Heidecker, Alexandra A., Bach, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Racemic 3‐substituted oxindoles were successfully converted into enantiomerically pure or enriched material (up to 99 % ee) upon irradiation at λ=366 nm in the presence of a chiral benzophenone catalyst (10 mol %). The photochemical deracemization process allows predictable editing of the stereogenic center at carbon atom C3. Light energy compensates for the associated loss of entropy and enables the decoupling of potentially reversible reactions, i.e. a hydrogen atom transfer to (photochemical) and from (thermal) the carbonyl group of the catalyst. The major enantiomer is continuously enriched in several catalytic cycles. The obtained oxindoles were shown to be valuable intermediates for further transformations, which proceeded with complete retention at the stereogenic center. A benzophenone‐based catalyst was used as the only source of chirality in the photochemical deracemization of 3‐substituted oxindoles. The reaction likely proceeds by hydrogen atom transfer and delivers the desired products, and derivatives thereof, with high enantiomeric excess.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202305274