Stable domains for higher order elliptic operators
This paper is devoted to prove that any domain satisfying a \((\delta_0,r_0)-\)capacity condition of first order is automatically \((m,p)-\)stable for all \(m\geqslant 1\) and \(p\geqslant 1\), and for any dimension \(N\geqslant 1\). In particular, this includes regular enough domains such as \(\mat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Grosjean, Jean-François Lemenant, Antoine Mougenot, Rémy |
description | This paper is devoted to prove that any domain satisfying a \((\delta_0,r_0)-\)capacity condition of first order is automatically \((m,p)-\)stable for all \(m\geqslant 1\) and \(p\geqslant 1\), and for any dimension \(N\geqslant 1\). In particular, this includes regular enough domains such as \(\mathscr{C}^1-\)domains, Lipchitz domains, Reifenberg flat domains, but is weak enough to also includes cusp points. Our result extends some of the results of Hayouni and Pierre valid only for \(N=2,3\), and extends also the results of Bucur and Zolesio for higher order operators, with a different and simpler proof. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2838442472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838442472</sourcerecordid><originalsourceid>FETCH-proquest_journals_28384424723</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_CHguxE1qcxfFu95LtFubErtxk_7fHnyAl5nDzEoUoPWhsgZgI8qURqUUHBuoa10IuGX3CCg7ejs_JdkTy8G_BmRJ3C3EEHzM_ikpIrtMnHZi3buQsPx5K_aX8_10rSLTZ8aU25FmnpbUgtXWGDAN6P-uL_fCNCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838442472</pqid></control><display><type>article</type><title>Stable domains for higher order elliptic operators</title><source>Free E- Journals</source><creator>Grosjean, Jean-François ; Lemenant, Antoine ; Mougenot, Rémy</creator><creatorcontrib>Grosjean, Jean-François ; Lemenant, Antoine ; Mougenot, Rémy</creatorcontrib><description>This paper is devoted to prove that any domain satisfying a \((\delta_0,r_0)-\)capacity condition of first order is automatically \((m,p)-\)stable for all \(m\geqslant 1\) and \(p\geqslant 1\), and for any dimension \(N\geqslant 1\). In particular, this includes regular enough domains such as \(\mathscr{C}^1-\)domains, Lipchitz domains, Reifenberg flat domains, but is weak enough to also includes cusp points. Our result extends some of the results of Hayouni and Pierre valid only for \(N=2,3\), and extends also the results of Bucur and Zolesio for higher order operators, with a different and simpler proof.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Operators</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Grosjean, Jean-François</creatorcontrib><creatorcontrib>Lemenant, Antoine</creatorcontrib><creatorcontrib>Mougenot, Rémy</creatorcontrib><title>Stable domains for higher order elliptic operators</title><title>arXiv.org</title><description>This paper is devoted to prove that any domain satisfying a \((\delta_0,r_0)-\)capacity condition of first order is automatically \((m,p)-\)stable for all \(m\geqslant 1\) and \(p\geqslant 1\), and for any dimension \(N\geqslant 1\). In particular, this includes regular enough domains such as \(\mathscr{C}^1-\)domains, Lipchitz domains, Reifenberg flat domains, but is weak enough to also includes cusp points. Our result extends some of the results of Hayouni and Pierre valid only for \(N=2,3\), and extends also the results of Bucur and Zolesio for higher order operators, with a different and simpler proof.</description><subject>Operators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_CHguxE1qcxfFu95LtFubErtxk_7fHnyAl5nDzEoUoPWhsgZgI8qURqUUHBuoa10IuGX3CCg7ejs_JdkTy8G_BmRJ3C3EEHzM_ikpIrtMnHZi3buQsPx5K_aX8_10rSLTZ8aU25FmnpbUgtXWGDAN6P-uL_fCNCQ</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Grosjean, Jean-François</creator><creator>Lemenant, Antoine</creator><creator>Mougenot, Rémy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230714</creationdate><title>Stable domains for higher order elliptic operators</title><author>Grosjean, Jean-François ; Lemenant, Antoine ; Mougenot, Rémy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28384424723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Operators</topic><toplevel>online_resources</toplevel><creatorcontrib>Grosjean, Jean-François</creatorcontrib><creatorcontrib>Lemenant, Antoine</creatorcontrib><creatorcontrib>Mougenot, Rémy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grosjean, Jean-François</au><au>Lemenant, Antoine</au><au>Mougenot, Rémy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Stable domains for higher order elliptic operators</atitle><jtitle>arXiv.org</jtitle><date>2023-07-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper is devoted to prove that any domain satisfying a \((\delta_0,r_0)-\)capacity condition of first order is automatically \((m,p)-\)stable for all \(m\geqslant 1\) and \(p\geqslant 1\), and for any dimension \(N\geqslant 1\). In particular, this includes regular enough domains such as \(\mathscr{C}^1-\)domains, Lipchitz domains, Reifenberg flat domains, but is weak enough to also includes cusp points. Our result extends some of the results of Hayouni and Pierre valid only for \(N=2,3\), and extends also the results of Bucur and Zolesio for higher order operators, with a different and simpler proof.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2838442472 |
source | Free E- Journals |
subjects | Operators |
title | Stable domains for higher order elliptic operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Stable%20domains%20for%20higher%20order%20elliptic%20operators&rft.jtitle=arXiv.org&rft.au=Grosjean,%20Jean-Fran%C3%A7ois&rft.date=2023-07-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2838442472%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838442472&rft_id=info:pmid/&rfr_iscdi=true |