Stable domains for higher order elliptic operators

This paper is devoted to prove that any domain satisfying a \((\delta_0,r_0)-\)capacity condition of first order is automatically \((m,p)-\)stable for all \(m\geqslant 1\) and \(p\geqslant 1\), and for any dimension \(N\geqslant 1\). In particular, this includes regular enough domains such as \(\mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Grosjean, Jean-François, Lemenant, Antoine, Mougenot, Rémy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to prove that any domain satisfying a \((\delta_0,r_0)-\)capacity condition of first order is automatically \((m,p)-\)stable for all \(m\geqslant 1\) and \(p\geqslant 1\), and for any dimension \(N\geqslant 1\). In particular, this includes regular enough domains such as \(\mathscr{C}^1-\)domains, Lipchitz domains, Reifenberg flat domains, but is weak enough to also includes cusp points. Our result extends some of the results of Hayouni and Pierre valid only for \(N=2,3\), and extends also the results of Bucur and Zolesio for higher order operators, with a different and simpler proof.
ISSN:2331-8422