Multimodal image enhancement using convolutional sparse coding
This paper proposes a wavelet domain-based method for multispectral image super-resolution. The stationary wavelet transform is proposed to decompose the multispectral image into directional wavelet components and for each wavelet component, a joint dictionary learning algorithm is proposed. Using s...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2023-08, Vol.29 (4), p.2099-2110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a wavelet domain-based method for multispectral image super-resolution. The stationary wavelet transform is proposed to decompose the multispectral image into directional wavelet components and for each wavelet component, a joint dictionary learning algorithm is proposed. Using sparse and redundant representations, the proposed approach helps capture intrinsic multispectral features using wavelet domain learning utilizing the up-sampling property of (SWT). The proposed method can learn and recover those image features more accurately. In order to validate the proposed method, we conducted comprehensive experiments. Moreover, we present a comparison of our proposed method with state-of-the-art algorithms over PSNR and SSIM evaluation parameters. The results of the experiments indicate that the proposed method outperforms state-of-the-art methods. |
---|---|
ISSN: | 0942-4962 1432-1882 |
DOI: | 10.1007/s00530-023-01074-1 |