Effect of Micellar Shape on Viscoelastic Behavior and Gel Network Structure of Hydrogel Formed by Surfactant-mediated Gelation Using Glutamic-acid-based Organogelator

Surfactant-mediated gelation (SMG) is a technique used to form hydrogels by solubilizing water-insoluble low-molecular-weight organogelators in surfactant micelles. In this study, we investigated the viscoelastic behavior of SMG hydrogels and the effect of micellar shape on their gel network structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Oleo Science 2023, Vol.72(6), pp.613-621
Hauptverfasser: Ikeda, Naoaki, Aramaki, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surfactant-mediated gelation (SMG) is a technique used to form hydrogels by solubilizing water-insoluble low-molecular-weight organogelators in surfactant micelles. In this study, we investigated the viscoelastic behavior of SMG hydrogels and the effect of micellar shape on their gel network structure using a glutamic acid-based organogelator. Stress-strain curves obtained from static viscoelasticity measurements showed that a wormlike micelle-mediated gel (W-SMG) exhibited a higher stress than a spherical micelle-mediated gel (S-SMG). From the viscosity-shear rate curve (flow curve), we inferred that the SMG gel exhibited a shear thickening behavior, particularly W-SMG. Microscopic observations revealed that W-SMG formed a denser and more uniform gel network than S-SMG when subjected to strong shearing. W-SMG showed remarkable adhesiveness and a significantly higher tensile normal stress than S-SMG. The storage modulus and loss modulus of W-SMG and the wormlike micellar solution obtained from frequency sweep measurements of the dynamic viscoelasticity were analyzed by Maxwell fitting. The wormlike micellar solution produced a good fit with the single Maxwell model, whereas W-SMG produced the best fit with the generalized Maxwell model comprising two Maxwell elements. From the relaxation time characteristics obtained from the Maxwell model, W-SMG was found to be a viscoelastic material coexisting with a structure having a short relaxation time derived from the gel network and a long relaxation time derived from the wormlike micelle. Under the oscillation strain measured by a rheometer, W-SMG showed a greater normal stress than the wormlike micellar solution, indicating a significant Weissenberg effect.
ISSN:1345-8957
1347-3352
DOI:10.5650/jos.ess23011