Narayana numbers as product of three repdigits in base \(g\)

In this paper, we show that there are only finitely many Narayana's numbers which can be written as product of three repdigits in base \(g\) with \(g \geq 2\). Moreover, for \(2 \leq g \leq 10\), we determine all these numbers.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Tiebekabe, Pagdame, Kakanou, K R, H Ben Yakkou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show that there are only finitely many Narayana's numbers which can be written as product of three repdigits in base \(g\) with \(g \geq 2\). Moreover, for \(2 \leq g \leq 10\), we determine all these numbers.
ISSN:2331-8422