Narayana numbers as product of three repdigits in base \(g\)
In this paper, we show that there are only finitely many Narayana's numbers which can be written as product of three repdigits in base \(g\) with \(g \geq 2\). Moreover, for \(2 \leq g \leq 10\), we determine all these numbers.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show that there are only finitely many Narayana's numbers which can be written as product of three repdigits in base \(g\) with \(g \geq 2\). Moreover, for \(2 \leq g \leq 10\), we determine all these numbers. |
---|---|
ISSN: | 2331-8422 |