The Use of Recycled Tire Rubber, Crushed Glass, and Crushed Clay Brick in Lightweight Concrete Production: A Review

Worldwide, vast amounts of waste are produced every year and most waste is sent directly to landfills or burnt, which has severe and harmful impacts on the environment. Recycling waste materials is considered the most visible solution to protect the environment. Using scraps in concrete production i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-07, Vol.15 (13), p.10060
Hauptverfasser: Helmy, Sherif H, Tahwia, Ahmed M, Mahdy, Mohamed G, Abd Elrahman, Mohamed, Abed, Mohammed A, Youssf, Osama
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Worldwide, vast amounts of waste are produced every year and most waste is sent directly to landfills or burnt, which has severe and harmful impacts on the environment. Recycling waste materials is considered the most visible solution to protect the environment. Using scraps in concrete production is a proper method for getting rid of wastes, improving the characteristics of concrete, reducing the consumption of natural aggregates, and can be used as cementitious materials that decrease cement production so that the CO2 that is produced during cement manufacturing decreases. This review paper summarizes the use of recycled waste materials, including rubber tires, crushed glass, and crushed clay brick in concrete, as a fractional replacement of aggregates, cement, etc., to develop eco-friendly lightweight construction materials. It has been concluded that the dry density of sustainable concrete decreased to 4, 21.7, and 31.7% when crushed glass, clay brick, and rubber tire were incorporated into the concrete instead of traditional aggregate, respectively. Waste rubber has good results in sulfate, thermal, and impact resistance, while glass powder and finely crushed clay brick helped to improve mechanical properties by increasing reach by 33% for glass and a slight increase for crushed clay brick, as well as thermal resistance compared to normal concrete. Moreover, due to the low particle density of these waste materials compared to that of normal-weight aggregates, these materials can be utilized efficiently to produce lightweight concrete for structural and non-structural applications such as road engineering, flooring for mounting machinery, highway and rail crash barriers, permeable pavement, interlocking bricks, insulation, filling concrete, and bearing walls.
ISSN:2071-1050
2071-1050
DOI:10.3390/su151310060