ZDP(n) ${Z}_{DP}(n)$ is bounded above by n2−(n+3)∕2 ${n}^{2}-(n+3)\unicode{x02215}2

In 2018, Dvořák and Postle introduced a generalization of proper coloring, the so‐called DP‐coloring. For any graph , the DP‐chromatic number of is defined analogously with the chromatic number of . In this article, we show that holds for , where is the join of and a complete graph with vertices. As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2023-09, Vol.104 (1), p.133-149
Hauptverfasser: Zhang, Meiqiao, Dong, Fengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2018, Dvořák and Postle introduced a generalization of proper coloring, the so‐called DP‐coloring. For any graph , the DP‐chromatic number of is defined analogously with the chromatic number of . In this article, we show that holds for , where is the join of and a complete graph with vertices. As a result, holds for every integer , where is the minimum nonnegative integer such that holds for every graph with vertices. Our result improves the best current upper bound of due to Bernshteyn, Kostochka, and Zhu.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22952