NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS

We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2023-08, Vol.108 (1), p.50-68
Hauptverfasser: DALAL, TARUN, KUMAR, NARASIMHA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 50
container_title Bulletin of the Australian Mathematical Society
container_volume 108
creator DALAL, TARUN
KUMAR, NARASIMHA
description We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$ , and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$ .
doi_str_mv 10.1017/S000497272200123X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836133668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S000497272200123X</cupid><sourcerecordid>2836133668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-5f59cddfd0b5e8746e3035340cb5cdadc2cb43257286e1f6b6977ad23cde6bd83</originalsourceid><addsrcrecordid>eNp1kMFKw0AURQdRMFY_wF3AdXRmXmYmWYY2aYNpAmkKuhqSmYm0WFMn7cKd_-Af-iU2tOBCXD3eu_fcBxehW4LvCSbiYYEx9kNBBaUYEwpPZ8ghgjGPcIBz5AyyN-iX6Krv14eNMRo4KMyLKl64Re5G1WOaf39-ZfEsj0u3msVF-ewmRelOyjRP4mzizovJMovK4ThfXKOLtn7tzc1pjtAyiavxzMuKaTqOMk8BETuPtSxUWrcaN8wEwucGMDDwsWqY0rVWVDU-UCZowA1pecNDIWpNQWnDGx3ACN0dc7e2e9-bfifX3d6-HV5KGgAnAJwPLnJ0Kdv1vTWt3NrVprYfkmA5NCT_NHRg4MTUm8au9Iv5jf6f-gEPCmMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836133668</pqid></control><display><type>article</type><title>NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>DALAL, TARUN ; KUMAR, NARASIMHA</creator><creatorcontrib>DALAL, TARUN ; KUMAR, NARASIMHA</creatorcontrib><description>We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$ , and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$ .</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S000497272200123X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Linear algebra</subject><ispartof>Bulletin of the Australian Mathematical Society, 2023-08, Vol.108 (1), p.50-68</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-5f59cddfd0b5e8746e3035340cb5cdadc2cb43257286e1f6b6977ad23cde6bd83</citedby><cites>FETCH-LOGICAL-c317t-5f59cddfd0b5e8746e3035340cb5cdadc2cb43257286e1f6b6977ad23cde6bd83</cites><orcidid>0000-0003-4164-4737 ; 0000-0002-6754-338X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000497272200123X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>DALAL, TARUN</creatorcontrib><creatorcontrib>KUMAR, NARASIMHA</creatorcontrib><title>NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$ , and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$ .</description><subject>Linear algebra</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKw0AURQdRMFY_wF3AdXRmXmYmWYY2aYNpAmkKuhqSmYm0WFMn7cKd_-Af-iU2tOBCXD3eu_fcBxehW4LvCSbiYYEx9kNBBaUYEwpPZ8ghgjGPcIBz5AyyN-iX6Krv14eNMRo4KMyLKl64Re5G1WOaf39-ZfEsj0u3msVF-ewmRelOyjRP4mzizovJMovK4ThfXKOLtn7tzc1pjtAyiavxzMuKaTqOMk8BETuPtSxUWrcaN8wEwucGMDDwsWqY0rVWVDU-UCZowA1pecNDIWpNQWnDGx3ACN0dc7e2e9-bfifX3d6-HV5KGgAnAJwPLnJ0Kdv1vTWt3NrVprYfkmA5NCT_NHRg4MTUm8au9Iv5jf6f-gEPCmMQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>DALAL, TARUN</creator><creator>KUMAR, NARASIMHA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4164-4737</orcidid><orcidid>https://orcid.org/0000-0002-6754-338X</orcidid></search><sort><creationdate>20230801</creationdate><title>NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS</title><author>DALAL, TARUN ; KUMAR, NARASIMHA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-5f59cddfd0b5e8746e3035340cb5cdadc2cb43257286e1f6b6977ad23cde6bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Linear algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DALAL, TARUN</creatorcontrib><creatorcontrib>KUMAR, NARASIMHA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DALAL, TARUN</au><au>KUMAR, NARASIMHA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>108</volume><issue>1</issue><spage>50</spage><epage>68</epage><pages>50-68</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$ , and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S000497272200123X</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4164-4737</orcidid><orcidid>https://orcid.org/0000-0002-6754-338X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2023-08, Vol.108 (1), p.50-68
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2836133668
source Cambridge Journals - Connect here FIRST to enable access
subjects Linear algebra
title NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NOTES%20ON%20ATKIN%E2%80%93LEHNER%20THEORY%20FOR%20DRINFELD%20MODULAR%20FORMS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=DALAL,%20TARUN&rft.date=2023-08-01&rft.volume=108&rft.issue=1&rft.spage=50&rft.epage=68&rft.pages=50-68&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S000497272200123X&rft_dat=%3Cproquest_cross%3E2836133668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836133668&rft_id=info:pmid/&rft_cupid=10_1017_S000497272200123X&rfr_iscdi=true