NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS

We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2023-08, Vol.108 (1), p.50-68
Hauptverfasser: DALAL, TARUN, KUMAR, NARASIMHA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$ , and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$ .
ISSN:0004-9727
1755-1633
DOI:10.1017/S000497272200123X