NOTES ON ATKIN–LEHNER THEORY FOR DRINFELD MODULAR FORMS
We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$ . We frame and check the conjecture for primes $\mathfrak {p}$ and h...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2023-08, Vol.108 (1), p.50-68 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math. 31(2) (2022), 637–651] for
$S_{k,l}(\Gamma _0(T))$
when
$\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$
. We frame and check the conjecture for primes
$\mathfrak {p}$
and higher levels
$\mathfrak {p}\mathfrak {m}$
, and show that a part of the conjecture for level
$\mathfrak {p} \mathfrak {m}$
does not hold if
$\mathfrak {m}\ne A$
and
$(k,l)=(2,1)$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S000497272200123X |