Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons
When possessing a potential difference between two neurons, an electromagnetic induction current appears in the Hopfield neural network (HNN), which can be emulated by a flux-controlled memristor synapse. Thus, a three-order two-neuron-based autonomous memristive HNN is presented in this paper, whic...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2019-03, Vol.95 (4), p.3385-3399 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When possessing a potential difference between two neurons, an electromagnetic induction current appears in the Hopfield neural network (HNN), which can be emulated by a flux-controlled memristor synapse. Thus, a three-order two-neuron-based autonomous memristive HNN is presented in this paper, which is the lowest order and has not been reported in the previous studies. With the mathematical model, the detailed stability analyses for the line equilibrium are executed, so that the fold and Hopf bifurcation sets and stability region distributions in the parameter plane are obtained. Furthermore, numerical results of coexisting bifurcation patterns are investigated, which are confirmed effectively by local basins of attraction and phase plane plots. The numerical results demonstrate coexisting multi-stable patterns of the spiral chaotic patterns with different dynamic amplitudes, periodic patterns with different periodicities, and stable resting patterns with different positions in the memristive HNN. Besides, the circuit synthesis and breadboard experiments are performed to well validate the numerical simulations. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-019-04762-8 |