Conditional symmetry: bond for attractor growing

Coexisting attractors with conditional symmetry exist in separated asymmetric basins of attraction with identical Lyapunov exponents. It is found that when a periodic function is introduced into the offset-boostable variable, infinitely many coexisting attractors may be coined. More interestingly, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2019-01, Vol.95 (2), p.1245-1256
Hauptverfasser: Li, Chunbiao, Xu, Yujie, Chen, Guanrong, Liu, Yongjian, Zheng, Jincun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coexisting attractors with conditional symmetry exist in separated asymmetric basins of attraction with identical Lyapunov exponents. It is found that when a periodic function is introduced into the offset-boostable variable, infinitely many coexisting attractors may be coined. More interestingly, such coexisting attractors may be hinged together and then grow in the phase space as the time evolves without any change of the Lyapunov exponents. It is shown that, in such cases, an initial condition can be applied for selecting the starting position; consequently, the system will present a special regime of homogenous multistability. Circuit implementation based on STM32 verifies the numerical simulations and theoretical analysis.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-018-4626-y