Anticanonically balanced metrics and the Hilbert–Mumford criterion for the δm-invariant of Fujita–Odaka

We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2023-09, Vol.64 (2), p.8, Article 8
1. Verfasser: Hashimoto, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 8
container_title Annals of global analysis and geometry
container_volume 64
creator Hashimoto, Yoshinori
description We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following algebro-geometric corollary: the δ m -invariant of Fujita–Odaka satisfies δ m > 1 if and only if the Fano manifold is stable in the sense of Saito–Takahashi, establishing a Hilbert–Mumford-type criterion for δ m > 1 . We also extend this result to the Kähler–Ricci g -solitons and the coupled Kähler–Einstein metrics, and as a by-product we obtain a formula for the asymptotic slope of the coupled Ding functional in terms of multiple test configurations.
doi_str_mv 10.1007/s10455-023-09911-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2836115585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836115585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1852-d274a17baa1464a8c073a79ef885e72a7c414ec46685128bafcc5b98e7159863</originalsourceid><addsrcrecordid>eNp9kEtKBDEQhoMoOD4u4CrgOppKdzrp5TD4AsXNLNyF6nRaM_akNekRZucdvIrn8BCexOgI7txUUdT3VcFPyBHwE-BcnSbgpZSMi4LxugZgYotMQCrBal7xbTLJG8EUL-92yV5KC865LAAmpJ-G0VsMQ8i179e0wR6DdS1dujF6myiGlo4Pjl76vnFx_Hx9u1ktuyG21EY_uuiHQPP4w3y8L5kPLxg9hpEOHT1fLfyI2blt8REPyE6HfXKHv32fzM_P5rNLdn17cTWbXjMLWgrWClUiqAYRyqpEbbkqUNWu01o6JVDZEkpny6rSEoRusLNWNrV2CmStq2KfHG_OPsXheeXSaBbDKob80QhdVABSapkpsaFsHFKKrjNP0S8xrg1w8x2q2YRqcnTmJ1QjslRspJThcO_i3-l_rC-pDX1G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836115585</pqid></control><display><type>article</type><title>Anticanonically balanced metrics and the Hilbert–Mumford criterion for the δm-invariant of Fujita–Odaka</title><source>SpringerLink Journals</source><creator>Hashimoto, Yoshinori</creator><creatorcontrib>Hashimoto, Yoshinori</creatorcontrib><description>We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following algebro-geometric corollary: the δ m -invariant of Fujita–Odaka satisfies δ m &gt; 1 if and only if the Fano manifold is stable in the sense of Saito–Takahashi, establishing a Hilbert–Mumford-type criterion for δ m &gt; 1 . We also extend this result to the Kähler–Ricci g -solitons and the coupled Kähler–Einstein metrics, and as a by-product we obtain a formula for the asymptotic slope of the coupled Ding functional in terms of multiple test configurations.</description><identifier>ISSN: 0232-704X</identifier><identifier>EISSN: 1572-9060</identifier><identifier>DOI: 10.1007/s10455-023-09911-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Approximation ; Criteria ; Differential Geometry ; Geometry ; Global Analysis and Analysis on Manifolds ; Invariants ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Solitary waves</subject><ispartof>Annals of global analysis and geometry, 2023-09, Vol.64 (2), p.8, Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1852-d274a17baa1464a8c073a79ef885e72a7c414ec46685128bafcc5b98e7159863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10455-023-09911-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10455-023-09911-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hashimoto, Yoshinori</creatorcontrib><title>Anticanonically balanced metrics and the Hilbert–Mumford criterion for the δm-invariant of Fujita–Odaka</title><title>Annals of global analysis and geometry</title><addtitle>Ann Glob Anal Geom</addtitle><description>We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following algebro-geometric corollary: the δ m -invariant of Fujita–Odaka satisfies δ m &gt; 1 if and only if the Fano manifold is stable in the sense of Saito–Takahashi, establishing a Hilbert–Mumford-type criterion for δ m &gt; 1 . We also extend this result to the Kähler–Ricci g -solitons and the coupled Kähler–Einstein metrics, and as a by-product we obtain a formula for the asymptotic slope of the coupled Ding functional in terms of multiple test configurations.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Criteria</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Invariants</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Solitary waves</subject><issn>0232-704X</issn><issn>1572-9060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtKBDEQhoMoOD4u4CrgOppKdzrp5TD4AsXNLNyF6nRaM_akNekRZucdvIrn8BCexOgI7txUUdT3VcFPyBHwE-BcnSbgpZSMi4LxugZgYotMQCrBal7xbTLJG8EUL-92yV5KC865LAAmpJ-G0VsMQ8i179e0wR6DdS1dujF6myiGlo4Pjl76vnFx_Hx9u1ktuyG21EY_uuiHQPP4w3y8L5kPLxg9hpEOHT1fLfyI2blt8REPyE6HfXKHv32fzM_P5rNLdn17cTWbXjMLWgrWClUiqAYRyqpEbbkqUNWu01o6JVDZEkpny6rSEoRusLNWNrV2CmStq2KfHG_OPsXheeXSaBbDKob80QhdVABSapkpsaFsHFKKrjNP0S8xrg1w8x2q2YRqcnTmJ1QjslRspJThcO_i3-l_rC-pDX1G</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hashimoto, Yoshinori</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230901</creationdate><title>Anticanonically balanced metrics and the Hilbert–Mumford criterion for the δm-invariant of Fujita–Odaka</title><author>Hashimoto, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1852-d274a17baa1464a8c073a79ef885e72a7c414ec46685128bafcc5b98e7159863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Criteria</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Invariants</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Solitary waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Yoshinori</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of global analysis and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anticanonically balanced metrics and the Hilbert–Mumford criterion for the δm-invariant of Fujita–Odaka</atitle><jtitle>Annals of global analysis and geometry</jtitle><stitle>Ann Glob Anal Geom</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>64</volume><issue>2</issue><spage>8</spage><pages>8-</pages><artnum>8</artnum><issn>0232-704X</issn><eissn>1572-9060</eissn><abstract>We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following algebro-geometric corollary: the δ m -invariant of Fujita–Odaka satisfies δ m &gt; 1 if and only if the Fano manifold is stable in the sense of Saito–Takahashi, establishing a Hilbert–Mumford-type criterion for δ m &gt; 1 . We also extend this result to the Kähler–Ricci g -solitons and the coupled Kähler–Einstein metrics, and as a by-product we obtain a formula for the asymptotic slope of the coupled Ding functional in terms of multiple test configurations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10455-023-09911-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 0232-704X
ispartof Annals of global analysis and geometry, 2023-09, Vol.64 (2), p.8, Article 8
issn 0232-704X
1572-9060
language eng
recordid cdi_proquest_journals_2836115585
source SpringerLink Journals
subjects Analysis
Approximation
Criteria
Differential Geometry
Geometry
Global Analysis and Analysis on Manifolds
Invariants
Mathematical Physics
Mathematics
Mathematics and Statistics
Solitary waves
title Anticanonically balanced metrics and the Hilbert–Mumford criterion for the δm-invariant of Fujita–Odaka
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anticanonically%20balanced%20metrics%20and%20the%20Hilbert%E2%80%93Mumford%20criterion%20for%20the%20%CE%B4m-invariant%20of%20Fujita%E2%80%93Odaka&rft.jtitle=Annals%20of%20global%20analysis%20and%20geometry&rft.au=Hashimoto,%20Yoshinori&rft.date=2023-09-01&rft.volume=64&rft.issue=2&rft.spage=8&rft.pages=8-&rft.artnum=8&rft.issn=0232-704X&rft.eissn=1572-9060&rft_id=info:doi/10.1007/s10455-023-09911-2&rft_dat=%3Cproquest_cross%3E2836115585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836115585&rft_id=info:pmid/&rfr_iscdi=true