Anticanonically balanced metrics and the Hilbert–Mumford criterion for the δm-invariant of Fujita–Odaka

We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2023-09, Vol.64 (2), p.8, Article 8
1. Verfasser: Hashimoto, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the stability condition for Fano manifolds defined by Saito–Takahashi, given in terms of the sum of the Ding invariant and the Chow weight, is equivalent to the existence of anticanonically balanced metrics. Combined with the result by Rubinstein–Tian–Zhang, we obtain the following algebro-geometric corollary: the δ m -invariant of Fujita–Odaka satisfies δ m > 1 if and only if the Fano manifold is stable in the sense of Saito–Takahashi, establishing a Hilbert–Mumford-type criterion for δ m > 1 . We also extend this result to the Kähler–Ricci g -solitons and the coupled Kähler–Einstein metrics, and as a by-product we obtain a formula for the asymptotic slope of the coupled Ding functional in terms of multiple test configurations.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-023-09911-2