Dosimetric evaluation of SBRT treatment plans of non-central lung tumours: clinical experience
Objectives:Lung cancer is the most commonly diagnosed cancer in Canada and the leading cause of cancer-related mortality in both men and women in North America. Surgery is usually the primary treatment option for early-stage non-small cell lung cancer (NSCLC). However, for patients who may not be su...
Gespeichert in:
Veröffentlicht in: | Journal of radiotherapy in practice 2022-06, Vol.21 (2), p.179-199 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives:Lung cancer is the most commonly diagnosed cancer in Canada and the leading cause of cancer-related mortality in both men and women in North America. Surgery is usually the primary treatment option for early-stage non-small cell lung cancer (NSCLC). However, for patients who may not be suitable candidates for surgery, stereotactic body radiation therapy (SBRT) is an alternative method of treatment. SBRT has proven to be an effective technique for treating NSCLC patients by focally administering high radiation dose to the tumour with acceptable risk of toxicity to surrounding healthy tissues. The goal of this comprehensive retrospective dosimetric study is to compare the dosimetric parameters between three-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT) lung SBRT treatment plans for two prescription doses.Methods:We retrospectively analysed and compared lung SBRT treatment plans of 263 patients treated with either a 3DCRT non-coplanar or with 2–3 VMAT arcs technique at 48 Gy in 4 fractions (48 Gy/4) or 50 Gy in 5 fractions (50 Gy/5) prescribed to the planning target volume (PTV), typically encompassing the 80% isodose volume. All patients were treated on either a Varian 21EX or TrueBeam linear accelerator using 6-MV or 10-MV photon beams.Results:The mean PTV V95% and V100% for treatment plans at 48 Gy/4 are 99·4 ± 0·6% and 96·0 ± 1·0%, respectively, for 3DCRT and 99·7 ± 0·4% and 96·4 ± 3·4%, respectively, for VMAT. The corresponding mean PTV V95% and V100% at 50 Gy/5 are 99·0 ± 1·4% and 95·5 ± 2·5% for 3DCRT and 99·5 ± 0·8% and 96·1 ± 1·6% for VMAT. The CIRI and HI5/95 for the PTV at 48 Gy/4 are 1·1 ± 0·1 and 1·2 ± 0·0 for 3DCRT and 1·0 ± 0·1 and 1·2 ± 0·0 for VMAT. The corresponding CIRI and HI5/95 at 50 Gy/5 are 1·1 ± 0·1 and 1·3 ± 0·1 for 3DCRT and 1·0 ± 0·1 and 1·2 ± 0·0 for VMAT. The mean R50% and D2cm at 48 Gy/4 are 5·0 ± 0·8 and 61·2 ± 7·0% for 3DCRT and 4·9 ± 0·8 and 57·8 ± 7·9% for VMAT. The corresponding R50% and D2cm at 50 Gy/5 are 4·7 ± 0·5 and 65·5 ± 9·4% for 3DCRT and 4·7 ± 0·7 and 60·0 ± 7·2% for VMAT.Conclusion:The use of 3DCRT or VMAT technique for lung SBRT is an efficient and reliable method for achieving dose conformity, rapid dose fall-off and minimising doses to the organs at risk. The VMAT technique resulted in improved dose conformity, rapid dose fall-off from the PTV compared to 3DCRT, although the magnitude may not be clinically significant. |
---|---|
ISSN: | 1460-3969 1467-1131 |
DOI: | 10.1017/S146039692000103X |