Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN

Large-scale numerical simulations (\(\gtrsim 500\rm{Mpc}\)) of cosmic reionization are required to match the large survey volume of the upcoming Square Kilometre Array (SKA). We present a multi-fidelity emulation technique for generating large-scale lightcone images of cosmic reionization. We first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Diao, Kangning, Mao, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Diao, Kangning
Mao, Yi
description Large-scale numerical simulations (\(\gtrsim 500\rm{Mpc}\)) of cosmic reionization are required to match the large survey volume of the upcoming Square Kilometre Array (SKA). We present a multi-fidelity emulation technique for generating large-scale lightcone images of cosmic reionization. We first train generative adversarial networks (GAN) on small-scale simulations and transfer that knowledge to large-scale simulations with hundreds of training images. Our method achieves high accuracy in generating lightcone images, as measured by various statistics with mostly percentage errors. This approach saves computational resources by 90% compared to conventional training methods. Our technique enables efficient and accurate emulation of large-scale images of the Universe.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2836092888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836092888</sourcerecordid><originalsourceid>FETCH-proquest_journals_28360928883</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgKNp_GHBdqImP6E7EF1Q3upehTtNImmiSIuLP24Uf4OJwD9zTYX0uxDiVE857LAnhnmUZn835dCr67HNsTNRpqW9kdHzDpm4MRuehbFm7UDvjlC7QQI5eEZxbJeBjKGrItapi4SzBoUZFYQkIW3qloXIRLh5tKMlDTuittgpWj4d3WFTw0rGC3eo0ZN0STaDktwM22m4u633ads-GQrzeXeNte125FLNswaWU4r_qC5DITUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836092888</pqid></control><display><type>article</type><title>Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN</title><source>Free E- Journals</source><creator>Diao, Kangning ; Mao, Yi</creator><creatorcontrib>Diao, Kangning ; Mao, Yi</creatorcontrib><description>Large-scale numerical simulations (\(\gtrsim 500\rm{Mpc}\)) of cosmic reionization are required to match the large survey volume of the upcoming Square Kilometre Array (SKA). We present a multi-fidelity emulation technique for generating large-scale lightcone images of cosmic reionization. We first train generative adversarial networks (GAN) on small-scale simulations and transfer that knowledge to large-scale simulations with hundreds of training images. Our method achieves high accuracy in generating lightcone images, as measured by various statistics with mostly percentage errors. This approach saves computational resources by 90% compared to conventional training methods. Our technique enables efficient and accurate emulation of large-scale images of the Universe.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Generative adversarial networks ; Ionization ; Knowledge management ; Simulation ; Training</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Diao, Kangning</creatorcontrib><creatorcontrib>Mao, Yi</creatorcontrib><title>Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN</title><title>arXiv.org</title><description>Large-scale numerical simulations (\(\gtrsim 500\rm{Mpc}\)) of cosmic reionization are required to match the large survey volume of the upcoming Square Kilometre Array (SKA). We present a multi-fidelity emulation technique for generating large-scale lightcone images of cosmic reionization. We first train generative adversarial networks (GAN) on small-scale simulations and transfer that knowledge to large-scale simulations with hundreds of training images. Our method achieves high accuracy in generating lightcone images, as measured by various statistics with mostly percentage errors. This approach saves computational resources by 90% compared to conventional training methods. Our technique enables efficient and accurate emulation of large-scale images of the Universe.</description><subject>Accuracy</subject><subject>Generative adversarial networks</subject><subject>Ionization</subject><subject>Knowledge management</subject><subject>Simulation</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQRYMgKNp_GHBdqImP6E7EF1Q3upehTtNImmiSIuLP24Uf4OJwD9zTYX0uxDiVE857LAnhnmUZn835dCr67HNsTNRpqW9kdHzDpm4MRuehbFm7UDvjlC7QQI5eEZxbJeBjKGrItapi4SzBoUZFYQkIW3qloXIRLh5tKMlDTuittgpWj4d3WFTw0rGC3eo0ZN0STaDktwM22m4u633ads-GQrzeXeNte125FLNswaWU4r_qC5DITUA</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Diao, Kangning</creator><creator>Mao, Yi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230711</creationdate><title>Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN</title><author>Diao, Kangning ; Mao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28360928883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Generative adversarial networks</topic><topic>Ionization</topic><topic>Knowledge management</topic><topic>Simulation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Diao, Kangning</creatorcontrib><creatorcontrib>Mao, Yi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diao, Kangning</au><au>Mao, Yi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN</atitle><jtitle>arXiv.org</jtitle><date>2023-07-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Large-scale numerical simulations (\(\gtrsim 500\rm{Mpc}\)) of cosmic reionization are required to match the large survey volume of the upcoming Square Kilometre Array (SKA). We present a multi-fidelity emulation technique for generating large-scale lightcone images of cosmic reionization. We first train generative adversarial networks (GAN) on small-scale simulations and transfer that knowledge to large-scale simulations with hundreds of training images. Our method achieves high accuracy in generating lightcone images, as measured by various statistics with mostly percentage errors. This approach saves computational resources by 90% compared to conventional training methods. Our technique enables efficient and accurate emulation of large-scale images of the Universe.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2836092888
source Free E- Journals
subjects Accuracy
Generative adversarial networks
Ionization
Knowledge management
Simulation
Training
title Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-fidelity%20Emulator%20for%20Cosmological%20Large%20Scale%2021%20cm%20Lightcone%20Images:%20a%20Few-shot%20Transfer%20Learning%20Approach%20with%20GAN&rft.jtitle=arXiv.org&rft.au=Diao,%20Kangning&rft.date=2023-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2836092888%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836092888&rft_id=info:pmid/&rfr_iscdi=true