Multi-fidelity Emulator for Cosmological Large Scale 21 cm Lightcone Images: a Few-shot Transfer Learning Approach with GAN

Large-scale numerical simulations (\(\gtrsim 500\rm{Mpc}\)) of cosmic reionization are required to match the large survey volume of the upcoming Square Kilometre Array (SKA). We present a multi-fidelity emulation technique for generating large-scale lightcone images of cosmic reionization. We first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Diao, Kangning, Mao, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale numerical simulations (\(\gtrsim 500\rm{Mpc}\)) of cosmic reionization are required to match the large survey volume of the upcoming Square Kilometre Array (SKA). We present a multi-fidelity emulation technique for generating large-scale lightcone images of cosmic reionization. We first train generative adversarial networks (GAN) on small-scale simulations and transfer that knowledge to large-scale simulations with hundreds of training images. Our method achieves high accuracy in generating lightcone images, as measured by various statistics with mostly percentage errors. This approach saves computational resources by 90% compared to conventional training methods. Our technique enables efficient and accurate emulation of large-scale images of the Universe.
ISSN:2331-8422