Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n})\)

In this paper, we consider the unit graph \(G(\mathbb{Z}_{n})\), where \(n=p_{1}^{n_{1}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}}p_{3}^{n_{3}}\) and \(p_{1}, p_{2}, p_{3}\) are distinct primes. For any prime \(q\), we construct \(q\)-ary linear codes from the inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Jain, Rupali S, B Surendranath Reddy, Shaikh, Wajid M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jain, Rupali S
B Surendranath Reddy
Shaikh, Wajid M
description In this paper, we consider the unit graph \(G(\mathbb{Z}_{n})\), where \(n=p_{1}^{n_{1}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}}p_{3}^{n_{3}}\) and \(p_{1}, p_{2}, p_{3}\) are distinct primes. For any prime \(q\), we construct \(q\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) with their parameters. We also prove that the dual of the constructed codes have minimum distance either 3 or 4. Lastly, we stated two conjectures on diameter of unit graph \(G(\mathbb{Z}_{n})\) and linear codes constructed from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) for any integer \(n\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2836089419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2836089419</sourcerecordid><originalsourceid>FETCH-proquest_journals_28360894193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwc87PKy4pKk0uyczPU8hPU_DJzEtNLFJwzk9JLVZIK8rPVSjJSFUIzcssUXAvSizIUIjRcNeIyU0syUhKqo6qja_Oq9WM0eRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjC2MzAwtLE0NLY-JUAQBVSjph</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836089419</pqid></control><display><type>article</type><title>Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n})\)</title><source>Free E- Journals</source><creator>Jain, Rupali S ; B Surendranath Reddy ; Shaikh, Wajid M</creator><creatorcontrib>Jain, Rupali S ; B Surendranath Reddy ; Shaikh, Wajid M</creatorcontrib><description>In this paper, we consider the unit graph \(G(\mathbb{Z}_{n})\), where \(n=p_{1}^{n_{1}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}}p_{3}^{n_{3}}\) and \(p_{1}, p_{2}, p_{3}\) are distinct primes. For any prime \(q\), we construct \(q\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) with their parameters. We also prove that the dual of the constructed codes have minimum distance either 3 or 4. Lastly, we stated two conjectures on diameter of unit graph \(G(\mathbb{Z}_{n})\) and linear codes constructed from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) for any integer \(n\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jain, Rupali S</creatorcontrib><creatorcontrib>B Surendranath Reddy</creatorcontrib><creatorcontrib>Shaikh, Wajid M</creatorcontrib><title>Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n})\)</title><title>arXiv.org</title><description>In this paper, we consider the unit graph \(G(\mathbb{Z}_{n})\), where \(n=p_{1}^{n_{1}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}}p_{3}^{n_{3}}\) and \(p_{1}, p_{2}, p_{3}\) are distinct primes. For any prime \(q\), we construct \(q\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) with their parameters. We also prove that the dual of the constructed codes have minimum distance either 3 or 4. Lastly, we stated two conjectures on diameter of unit graph \(G(\mathbb{Z}_{n})\) and linear codes constructed from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) for any integer \(n\).</description><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwc87PKy4pKk0uyczPU8hPU_DJzEtNLFJwzk9JLVZIK8rPVSjJSFUIzcssUXAvSizIUIjRcNeIyU0syUhKqo6qja_Oq9WM0eRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjC2MzAwtLE0NLY-JUAQBVSjph</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Jain, Rupali S</creator><creator>B Surendranath Reddy</creator><creator>Shaikh, Wajid M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230711</creationdate><title>Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n})\)</title><author>Jain, Rupali S ; B Surendranath Reddy ; Shaikh, Wajid M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28360894193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jain, Rupali S</creatorcontrib><creatorcontrib>B Surendranath Reddy</creatorcontrib><creatorcontrib>Shaikh, Wajid M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Rupali S</au><au>B Surendranath Reddy</au><au>Shaikh, Wajid M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n})\)</atitle><jtitle>arXiv.org</jtitle><date>2023-07-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we consider the unit graph \(G(\mathbb{Z}_{n})\), where \(n=p_{1}^{n_{1}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}}p_{3}^{n_{3}}\) and \(p_{1}, p_{2}, p_{3}\) are distinct primes. For any prime \(q\), we construct \(q\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) with their parameters. We also prove that the dual of the constructed codes have minimum distance either 3 or 4. Lastly, we stated two conjectures on diameter of unit graph \(G(\mathbb{Z}_{n})\) and linear codes constructed from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) for any integer \(n\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2836089419
source Free E- Journals
subjects Mathematical analysis
title Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n})\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Construction%20of%20Linear%20Codes%20from%20the%20Unit%20Graph%20%5C(G(%5Cmathbb%7BZ%7D_%7Bn%7D)%5C)&rft.jtitle=arXiv.org&rft.au=Jain,%20Rupali%20S&rft.date=2023-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2836089419%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836089419&rft_id=info:pmid/&rfr_iscdi=true