Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n})\)

In this paper, we consider the unit graph \(G(\mathbb{Z}_{n})\), where \(n=p_{1}^{n_{1}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}}p_{3}^{n_{3}}\) and \(p_{1}, p_{2}, p_{3}\) are distinct primes. For any prime \(q\), we construct \(q\)-ary linear codes from the inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Jain, Rupali S, B Surendranath Reddy, Shaikh, Wajid M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the unit graph \(G(\mathbb{Z}_{n})\), where \(n=p_{1}^{n_{1}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}} \text{ or } p_{1}^{n_{1}}p_{2}^{n_{2}}p_{3}^{n_{3}}\) and \(p_{1}, p_{2}, p_{3}\) are distinct primes. For any prime \(q\), we construct \(q\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) with their parameters. We also prove that the dual of the constructed codes have minimum distance either 3 or 4. Lastly, we stated two conjectures on diameter of unit graph \(G(\mathbb{Z}_{n})\) and linear codes constructed from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n})\) for any integer \(n\).
ISSN:2331-8422