Gridless DOA Estimation Using Complex-Valued Convolutional Neural Network With Phasor Normalization

We propose a complex LeDIM-net (C-LeDIM-net) convolutional neural network (CNN) that employs a newly-formulated complex phasor normalization for gridless direction-of-arrival (DOA) estimation. Unlike existing deep learning (DL) approaches, C-LeDIM-net extracts explicit phase information in its inter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2023-01, Vol.30, p.1-5
Hauptverfasser: Tan, Zhi-Wei, Liu, Yuan, Khong, Andy W. H., Nguyen, Anh H. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a complex LeDIM-net (C-LeDIM-net) convolutional neural network (CNN) that employs a newly-formulated complex phasor normalization for gridless direction-of-arrival (DOA) estimation. Unlike existing deep learning (DL) approaches, C-LeDIM-net extracts explicit phase information in its intermediate complex-valued feature maps to estimate unknown source DOAs. Given its explicit phase representation, the proposed complex phasor normalization leverages the phase-to-sensor relationship of the feature maps which, as a consequence, improves the robustness of C-LeDIM-net to array imperfections when operating with limited number of snapshots. Simulation results show that the proposed method outperforms the existing methods, including the subspace-based and DL-based methods.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2023.3292037