On the Performance of SPAD-Based Optical Wireless Communication with ACO-OFDM
The nonlinear distortion introduced by the dead time strongly limits the throughput of the highly sensitive SPAD-based optical wireless communication (OWC) systems. Optical OFDM can be employed in the systems with SPAD arrays to improve the spectral efficiency. In this work, a theoretical performanc...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2023-07, Vol.27 (7), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nonlinear distortion introduced by the dead time strongly limits the throughput of the highly sensitive SPAD-based optical wireless communication (OWC) systems. Optical OFDM can be employed in the systems with SPAD arrays to improve the spectral efficiency. In this work, a theoretical performance analysis of SPAD-based OWC system with asymmetrically-clipped optical OFDM (ACO-OFDM) is presented. The impact of the SPAD nonlinearity on the system performance is investigated. In addition, the comparison of the considered scheme with DCO-OFDM is presented showing the distinct reliable operation regimes of the two schemes. In low optical power regimes, ACO-OFDM outperforms DCO-OFDM with around 4 dB power gain achieved by 16-QAM ACO-OFDM over 4-QAM DCO-OFDM. However, DCO-OFDM is in turn more preferable in high power regimes which extends the maximal tolerable received optical power by 7.4 dB. |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2023.3271617 |