On the number of necklaces whose co-periods divide a given integer

Using Ramanujan sums, which generalize the Möbius function and the Euler totient function, we enumerate q -ary (fixed) necklaces over the color set { a 1 , … , a q } with n i beads of color a i for i = 1 , … , q and co-periods dividing a fixed non-negative integer v . (The co-period of a necklace is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2023-08, Vol.61 (4), p.1021-1035
1. Verfasser: Hadjicostas, Petros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using Ramanujan sums, which generalize the Möbius function and the Euler totient function, we enumerate q -ary (fixed) necklaces over the color set { a 1 , … , a q } with n i beads of color a i for i = 1 , … , q and co-periods dividing a fixed non-negative integer v . (The co-period of a necklace is its length divided by its period.) We also provide Witt-type infinite products and Lambert-type multiple infinite series for these quantities. Furthermore, we provide regions in C q where our infinite products and series converge absolutely.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-023-00723-3