On the number of necklaces whose co-periods divide a given integer
Using Ramanujan sums, which generalize the Möbius function and the Euler totient function, we enumerate q -ary (fixed) necklaces over the color set { a 1 , … , a q } with n i beads of color a i for i = 1 , … , q and co-periods dividing a fixed non-negative integer v . (The co-period of a necklace is...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2023-08, Vol.61 (4), p.1021-1035 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using Ramanujan sums, which generalize the Möbius function and the Euler totient function, we enumerate
q
-ary (fixed) necklaces over the color set
{
a
1
,
…
,
a
q
}
with
n
i
beads of color
a
i
for
i
=
1
,
…
,
q
and co-periods dividing a fixed non-negative integer
v
. (The co-period of a necklace is its length divided by its period.) We also provide Witt-type infinite products and Lambert-type multiple infinite series for these quantities. Furthermore, we provide regions in
C
q
where our infinite products and series converge absolutely. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-023-00723-3 |