Orthogonal polynomials on a class of planar algebraic curves

We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form ym=ϕ(x)$y^{m} = \phi (x)$ in R2${\mathbb {R}}^2$ where m=1,2$m = 1, 2$ and ϕ is a polynomial of arbitrary degree d, in terms of univariate semiclassical OPs. We compute connection coefficients that relate the bivaria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2023-07, Vol.151 (1), p.369-405
Hauptverfasser: Fasondini, Marco, Olver, Sheehan, Xu, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form ym=ϕ(x)$y^{m} = \phi (x)$ in R2${\mathbb {R}}^2$ where m=1,2$m = 1, 2$ and ϕ is a polynomial of arbitrary degree d, in terms of univariate semiclassical OPs. We compute connection coefficients that relate the bivariate OPs to a polynomial basis that is itself orthogonal and whose span contains the OPs as a subspace. The connection matrix is shown to be banded and the connection coefficients and Jacobi matrices for OPs of degree 0,…,N$0, \ldots , N$ are computed via the Lanczos algorithm in O(Nd4)$\mathcal {O}(Nd^4)$ operations.
ISSN:0022-2526
1467-9590
DOI:10.1111/sapm.12582