Orthogonal polynomials on a class of planar algebraic curves
We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form ym=ϕ(x)$y^{m} = \phi (x)$ in R2${\mathbb {R}}^2$ where m=1,2$m = 1, 2$ and ϕ is a polynomial of arbitrary degree d, in terms of univariate semiclassical OPs. We compute connection coefficients that relate the bivaria...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2023-07, Vol.151 (1), p.369-405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct bivariate orthogonal polynomials (OPs) on algebraic curves of the form ym=ϕ(x)$y^{m} = \phi (x)$ in R2${\mathbb {R}}^2$ where m=1,2$m = 1, 2$ and ϕ is a polynomial of arbitrary degree d, in terms of univariate semiclassical OPs. We compute connection coefficients that relate the bivariate OPs to a polynomial basis that is itself orthogonal and whose span contains the OPs as a subspace. The connection matrix is shown to be banded and the connection coefficients and Jacobi matrices for OPs of degree 0,…,N$0, \ldots , N$ are computed via the Lanczos algorithm in O(Nd4)$\mathcal {O}(Nd^4)$ operations. |
---|---|
ISSN: | 0022-2526 1467-9590 |
DOI: | 10.1111/sapm.12582 |