Orthonormal discrete Legendre polynomials for nonlinear reaction‐diffusion equations with ABC fractional derivative and non‐local boundary conditions

This paper introduces a fractional version of reaction‐diffusion equations with non‐local boundary conditions via a non‐singular fractional derivative defined by Atangana and Baleanu. The orthonormal discrete Legendre polynomials are introduced as suitable family of basis functions to find the solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-08, Vol.46 (12), p.13423-13435
Hauptverfasser: Heydari, Mohammad Hossein, Haji Shaabani, Mahmood, Rasti, Zahra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a fractional version of reaction‐diffusion equations with non‐local boundary conditions via a non‐singular fractional derivative defined by Atangana and Baleanu. The orthonormal discrete Legendre polynomials are introduced as suitable family of basis functions to find the solution of these equations. An operational matrix is derived for fractional derivative of these polynomials. A collocation method based on the expressed polynomials and their operational matrices is developed for solving such problems. The established method transforms solving the original problem under consideration into solving a system of algebraic equations. Some numerical examples are used to investigate the validity of the presented method.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9261