Existence of solution for Volterra–Fredholm type stochastic fractional integro‐differential system of order μ ∈ (1, 2) with sectorial operators
The mainspring of the study is to investigate the out‐turn of stochastic Volterra–Fredholm integro‐differential inclusion of order μ∈(1,2)$$ \mu \in \left(1,2\right) $$ with sectorial operator of the type (P,η,ϱ,γ)$$ \left(P,\eta, \varrho, \gamma \right) $$. The existence results of our proposed pro...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-08, Vol.46 (12), p.13142-13154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mainspring of the study is to investigate the out‐turn of stochastic Volterra–Fredholm integro‐differential inclusion of order
μ∈(1,2)$$ \mu \in \left(1,2\right) $$ with sectorial operator of the type
(P,η,ϱ,γ)$$ \left(P,\eta, \varrho, \gamma \right) $$. The existence results of our proposed problem is derived by employing Martelli's fixed point approach. We do not limit the theoretical results of fractional stochastic equation to local condition but extend to nonlocal condition, and physical interpretation of our obtained results is proved with an appropriate illustration. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9240 |