Existence of solution for Volterra–Fredholm type stochastic fractional integro‐differential system of order μ ∈ (1, 2) with sectorial operators

The mainspring of the study is to investigate the out‐turn of stochastic Volterra–Fredholm integro‐differential inclusion of order μ∈(1,2)$$ \mu \in \left(1,2\right) $$ with sectorial operator of the type (P,η,ϱ,γ)$$ \left(P,\eta, \varrho, \gamma \right) $$. The existence results of our proposed pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-08, Vol.46 (12), p.13142-13154
Hauptverfasser: Kaliraj, K., Muthuvel, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mainspring of the study is to investigate the out‐turn of stochastic Volterra–Fredholm integro‐differential inclusion of order μ∈(1,2)$$ \mu \in \left(1,2\right) $$ with sectorial operator of the type (P,η,ϱ,γ)$$ \left(P,\eta, \varrho, \gamma \right) $$. The existence results of our proposed problem is derived by employing Martelli's fixed point approach. We do not limit the theoretical results of fractional stochastic equation to local condition but extend to nonlocal condition, and physical interpretation of our obtained results is proved with an appropriate illustration.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9240