Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture

One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (29), p.n/a
Hauptverfasser: Premadasa, Uvinduni I., Bocharova, Vera, Miles, Audrey R., Stamberga, Diana, Belony, Stella, Bryantsev, Vyacheslav S., Elgattar, Adnan, Liao, Yi, Damron, Joshua T., Kidder, Michelle K., Doughty, Benjamin, Custelcean, Radu, Ma, Ying‐Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Premadasa, Uvinduni I.
Bocharova, Vera
Miles, Audrey R.
Stamberga, Diana
Belony, Stella
Bryantsev, Vyacheslav S.
Elgattar, Adnan
Liao, Yi
Damron, Joshua T.
Kidder, Michelle K.
Doughty, Benjamin
Custelcean, Radu
Ma, Ying‐Zhong
description One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically‐driven approach for CO2 release by exploiting the unique properties of an indazole metastable‐state photoacid (mPAH). Our measurements on simulated and amino acid‐based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid‐based DAC systems, respectively. Our results confirm the feasibility of on‐demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents. On‐demand CO2 release under ambient conditions using light instead of heat is achieved for simulated and amino acid‐based direct air capture systems by regulating solution pHs via a photoinduced proton transfer of a reversible metastable‐state photoacid, leading to energetically sustainable and economically feasible climate change mitigation solutions using solar energy.
doi_str_mv 10.1002/ange.202304957
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2835326748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835326748</sourcerecordid><originalsourceid>FETCH-LOGICAL-p787-f9211158347618d11fe9b3b94607d5488ec4354e83e8fac04730b089453a1c863</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGExHdup7EdXH-2pkuSUE0wZ8orifT4RaGlLZMB013PoLP6JMIYljdnOQ75yYfQteUDCgh7NZUCxgwwjgRaSxPUI_GjEZcxvIU9QgRIlJMpOfoom1XhJCEybSHNi_LOtR2CWtnTVl2P1_fI-8-oMLZM8OvUIJpAb-3rlpggx8hmDaYvIQd9xZMAPzXN9bNcVF7PK7ALzo8LgpnHVQBj5wHG_DQeZyZJmw9XKKzwpQtXP3fPprdjWfZfTR9njxkw2nUSCWjImWU0lhxIROq5pQWkOY8T0VC5DwWSoEVPBagOKjCWCIkJzlRqYi5oVYlvI9uDrONrzdbaINe1Vtf7T5qpnjMWSKF2lHpgfp0JXS68W5tfKcp0Xuleq9UH5Xq4dNkfEz8FweAbeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835326748</pqid></control><display><type>article</type><title>Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Premadasa, Uvinduni I. ; Bocharova, Vera ; Miles, Audrey R. ; Stamberga, Diana ; Belony, Stella ; Bryantsev, Vyacheslav S. ; Elgattar, Adnan ; Liao, Yi ; Damron, Joshua T. ; Kidder, Michelle K. ; Doughty, Benjamin ; Custelcean, Radu ; Ma, Ying‐Zhong</creator><creatorcontrib>Premadasa, Uvinduni I. ; Bocharova, Vera ; Miles, Audrey R. ; Stamberga, Diana ; Belony, Stella ; Bryantsev, Vyacheslav S. ; Elgattar, Adnan ; Liao, Yi ; Damron, Joshua T. ; Kidder, Michelle K. ; Doughty, Benjamin ; Custelcean, Radu ; Ma, Ying‐Zhong</creatorcontrib><description>One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically‐driven approach for CO2 release by exploiting the unique properties of an indazole metastable‐state photoacid (mPAH). Our measurements on simulated and amino acid‐based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid‐based DAC systems, respectively. Our results confirm the feasibility of on‐demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents. On‐demand CO2 release under ambient conditions using light instead of heat is achieved for simulated and amino acid‐based direct air capture systems by regulating solution pHs via a photoinduced proton transfer of a reversible metastable‐state photoacid, leading to energetically sustainable and economically feasible climate change mitigation solutions using solar energy.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202304957</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amino Acids ; Carbon dioxide ; Carbon Storage ; Chemistry ; Climate change ; CO2 Release ; Energy costs ; Energy efficiency ; Impact analysis ; Inorganic carbon ; Isomers ; Luminous intensity ; Metastable Compounds ; Metastable state ; Photochemistry ; Regeneration ; Sorbents</subject><ispartof>Angewandte Chemie, 2023-07, Vol.135 (29), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6501-6594 ; 0000-0002-3539-0446 ; 0000-0002-8217-8202 ; 0000-0003-4270-3866 ; 0000-0002-6336-3402 ; 0000-0002-8154-1006 ; 0000-0002-4919-2176 ; 0000-0001-6429-9329 ; 0000-0003-3409-0190 ; 0000-0001-8230-4785 ; 0000-0002-0727-7972 ; 0000-0003-0289-2965 ; 0000-0003-0851-835X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202304957$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202304957$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Premadasa, Uvinduni I.</creatorcontrib><creatorcontrib>Bocharova, Vera</creatorcontrib><creatorcontrib>Miles, Audrey R.</creatorcontrib><creatorcontrib>Stamberga, Diana</creatorcontrib><creatorcontrib>Belony, Stella</creatorcontrib><creatorcontrib>Bryantsev, Vyacheslav S.</creatorcontrib><creatorcontrib>Elgattar, Adnan</creatorcontrib><creatorcontrib>Liao, Yi</creatorcontrib><creatorcontrib>Damron, Joshua T.</creatorcontrib><creatorcontrib>Kidder, Michelle K.</creatorcontrib><creatorcontrib>Doughty, Benjamin</creatorcontrib><creatorcontrib>Custelcean, Radu</creatorcontrib><creatorcontrib>Ma, Ying‐Zhong</creatorcontrib><title>Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture</title><title>Angewandte Chemie</title><description>One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically‐driven approach for CO2 release by exploiting the unique properties of an indazole metastable‐state photoacid (mPAH). Our measurements on simulated and amino acid‐based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid‐based DAC systems, respectively. Our results confirm the feasibility of on‐demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents. On‐demand CO2 release under ambient conditions using light instead of heat is achieved for simulated and amino acid‐based direct air capture systems by regulating solution pHs via a photoinduced proton transfer of a reversible metastable‐state photoacid, leading to energetically sustainable and economically feasible climate change mitigation solutions using solar energy.</description><subject>Amino Acids</subject><subject>Carbon dioxide</subject><subject>Carbon Storage</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>CO2 Release</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Impact analysis</subject><subject>Inorganic carbon</subject><subject>Isomers</subject><subject>Luminous intensity</subject><subject>Metastable Compounds</subject><subject>Metastable state</subject><subject>Photochemistry</subject><subject>Regeneration</subject><subject>Sorbents</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAUhSdGExHdup7EdXH-2pkuSUE0wZ8orifT4RaGlLZMB013PoLP6JMIYljdnOQ75yYfQteUDCgh7NZUCxgwwjgRaSxPUI_GjEZcxvIU9QgRIlJMpOfoom1XhJCEybSHNi_LOtR2CWtnTVl2P1_fI-8-oMLZM8OvUIJpAb-3rlpggx8hmDaYvIQd9xZMAPzXN9bNcVF7PK7ALzo8LgpnHVQBj5wHG_DQeZyZJmw9XKKzwpQtXP3fPprdjWfZfTR9njxkw2nUSCWjImWU0lhxIROq5pQWkOY8T0VC5DwWSoEVPBagOKjCWCIkJzlRqYi5oVYlvI9uDrONrzdbaINe1Vtf7T5qpnjMWSKF2lHpgfp0JXS68W5tfKcp0Xuleq9UH5Xq4dNkfEz8FweAbeI</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Premadasa, Uvinduni I.</creator><creator>Bocharova, Vera</creator><creator>Miles, Audrey R.</creator><creator>Stamberga, Diana</creator><creator>Belony, Stella</creator><creator>Bryantsev, Vyacheslav S.</creator><creator>Elgattar, Adnan</creator><creator>Liao, Yi</creator><creator>Damron, Joshua T.</creator><creator>Kidder, Michelle K.</creator><creator>Doughty, Benjamin</creator><creator>Custelcean, Radu</creator><creator>Ma, Ying‐Zhong</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6501-6594</orcidid><orcidid>https://orcid.org/0000-0002-3539-0446</orcidid><orcidid>https://orcid.org/0000-0002-8217-8202</orcidid><orcidid>https://orcid.org/0000-0003-4270-3866</orcidid><orcidid>https://orcid.org/0000-0002-6336-3402</orcidid><orcidid>https://orcid.org/0000-0002-8154-1006</orcidid><orcidid>https://orcid.org/0000-0002-4919-2176</orcidid><orcidid>https://orcid.org/0000-0001-6429-9329</orcidid><orcidid>https://orcid.org/0000-0003-3409-0190</orcidid><orcidid>https://orcid.org/0000-0001-8230-4785</orcidid><orcidid>https://orcid.org/0000-0002-0727-7972</orcidid><orcidid>https://orcid.org/0000-0003-0289-2965</orcidid><orcidid>https://orcid.org/0000-0003-0851-835X</orcidid></search><sort><creationdate>20230717</creationdate><title>Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture</title><author>Premadasa, Uvinduni I. ; Bocharova, Vera ; Miles, Audrey R. ; Stamberga, Diana ; Belony, Stella ; Bryantsev, Vyacheslav S. ; Elgattar, Adnan ; Liao, Yi ; Damron, Joshua T. ; Kidder, Michelle K. ; Doughty, Benjamin ; Custelcean, Radu ; Ma, Ying‐Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p787-f9211158347618d11fe9b3b94607d5488ec4354e83e8fac04730b089453a1c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amino Acids</topic><topic>Carbon dioxide</topic><topic>Carbon Storage</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>CO2 Release</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Impact analysis</topic><topic>Inorganic carbon</topic><topic>Isomers</topic><topic>Luminous intensity</topic><topic>Metastable Compounds</topic><topic>Metastable state</topic><topic>Photochemistry</topic><topic>Regeneration</topic><topic>Sorbents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Premadasa, Uvinduni I.</creatorcontrib><creatorcontrib>Bocharova, Vera</creatorcontrib><creatorcontrib>Miles, Audrey R.</creatorcontrib><creatorcontrib>Stamberga, Diana</creatorcontrib><creatorcontrib>Belony, Stella</creatorcontrib><creatorcontrib>Bryantsev, Vyacheslav S.</creatorcontrib><creatorcontrib>Elgattar, Adnan</creatorcontrib><creatorcontrib>Liao, Yi</creatorcontrib><creatorcontrib>Damron, Joshua T.</creatorcontrib><creatorcontrib>Kidder, Michelle K.</creatorcontrib><creatorcontrib>Doughty, Benjamin</creatorcontrib><creatorcontrib>Custelcean, Radu</creatorcontrib><creatorcontrib>Ma, Ying‐Zhong</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Premadasa, Uvinduni I.</au><au>Bocharova, Vera</au><au>Miles, Audrey R.</au><au>Stamberga, Diana</au><au>Belony, Stella</au><au>Bryantsev, Vyacheslav S.</au><au>Elgattar, Adnan</au><au>Liao, Yi</au><au>Damron, Joshua T.</au><au>Kidder, Michelle K.</au><au>Doughty, Benjamin</au><au>Custelcean, Radu</au><au>Ma, Ying‐Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-07-17</date><risdate>2023</risdate><volume>135</volume><issue>29</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically‐driven approach for CO2 release by exploiting the unique properties of an indazole metastable‐state photoacid (mPAH). Our measurements on simulated and amino acid‐based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid‐based DAC systems, respectively. Our results confirm the feasibility of on‐demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents. On‐demand CO2 release under ambient conditions using light instead of heat is achieved for simulated and amino acid‐based direct air capture systems by regulating solution pHs via a photoinduced proton transfer of a reversible metastable‐state photoacid, leading to energetically sustainable and economically feasible climate change mitigation solutions using solar energy.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202304957</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6501-6594</orcidid><orcidid>https://orcid.org/0000-0002-3539-0446</orcidid><orcidid>https://orcid.org/0000-0002-8217-8202</orcidid><orcidid>https://orcid.org/0000-0003-4270-3866</orcidid><orcidid>https://orcid.org/0000-0002-6336-3402</orcidid><orcidid>https://orcid.org/0000-0002-8154-1006</orcidid><orcidid>https://orcid.org/0000-0002-4919-2176</orcidid><orcidid>https://orcid.org/0000-0001-6429-9329</orcidid><orcidid>https://orcid.org/0000-0003-3409-0190</orcidid><orcidid>https://orcid.org/0000-0001-8230-4785</orcidid><orcidid>https://orcid.org/0000-0002-0727-7972</orcidid><orcidid>https://orcid.org/0000-0003-0289-2965</orcidid><orcidid>https://orcid.org/0000-0003-0851-835X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-07, Vol.135 (29), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2835326748
source Wiley Online Library Journals Frontfile Complete
subjects Amino Acids
Carbon dioxide
Carbon Storage
Chemistry
Climate change
CO2 Release
Energy costs
Energy efficiency
Impact analysis
Inorganic carbon
Isomers
Luminous intensity
Metastable Compounds
Metastable state
Photochemistry
Regeneration
Sorbents
title Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photochemically%E2%80%90Driven%20CO2%20Release%20Using%20a%20Metastable%E2%80%90State%20Photoacid%20for%20Energy%20Efficient%20Direct%20Air%20Capture&rft.jtitle=Angewandte%20Chemie&rft.au=Premadasa,%20Uvinduni%20I.&rft.date=2023-07-17&rft.volume=135&rft.issue=29&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202304957&rft_dat=%3Cproquest_wiley%3E2835326748%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835326748&rft_id=info:pmid/&rfr_iscdi=true