Photochemically‐Driven CO2 Release Using a Metastable‐State Photoacid for Energy Efficient Direct Air Capture

One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (29), p.n/a
Hauptverfasser: Premadasa, Uvinduni I., Bocharova, Vera, Miles, Audrey R., Stamberga, Diana, Belony, Stella, Bryantsev, Vyacheslav S., Elgattar, Adnan, Liao, Yi, Damron, Joshua T., Kidder, Michelle K., Doughty, Benjamin, Custelcean, Radu, Ma, Ying‐Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2/year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically‐driven approach for CO2 release by exploiting the unique properties of an indazole metastable‐state photoacid (mPAH). Our measurements on simulated and amino acid‐based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid‐based DAC systems, respectively. Our results confirm the feasibility of on‐demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents. On‐demand CO2 release under ambient conditions using light instead of heat is achieved for simulated and amino acid‐based direct air capture systems by regulating solution pHs via a photoinduced proton transfer of a reversible metastable‐state photoacid, leading to energetically sustainable and economically feasible climate change mitigation solutions using solar energy.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202304957